Advertisement

Nutraceuticals from Bioengineered Microorganisms

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter

Abstract

Microbiota inhabits almost all the niches on earth and has shunned the modern world. Microbial metabolites combined with modern natural product research methodology has opened the way for a new era of nutraceuticals and therapeutic. Microbes can be engineered to produce metabolites, called as postbiotics that have health, nutrition, and industrial applications. The postbiotics confer beneficial health effects such as inhibition of gut and genitourinary microbial infections, immunomodulation, and preventing the inflammatory gut diseases and cancer.

Highlights

  • Microorganisms can be engineered to do produce an array of metabolites

  • The microorganism of humans or animals origin are considered to be useful

  • Several recombinant microbial products are in use in humans and animals.

Keywords

Nutraceuticals Bioengineered microbes Recombinant enzymes Probiotics Postbiotics Immunomodulation Antimicrobial peptides 

References

  1. Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen YQ, Chen W (2014) Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9(10):e109461.  https://doi.org/10.1371/journal.pone.0109461 (eCollection 2014)CrossRefGoogle Scholar
  2. Allain T, Chaouch S, Thomas M, Travers MA, Valle I, Langella P, Grellier P, Polack B, Florent I, Bermúdez-Humarán LG (2018) Bile salt hydrolase activities: a novel target to screen anti-Giardia lactobacilli? Front Microbiol 9:89.  https://doi.org/10.3389/fmicb.2018.00089 (eCollection 2018)
  3. Amiri-Jami M, Abdelhamid AG, Hazaa M, Kakuda Y, Griffths MW (2015) Recombinant production of omega-3 fatty acids by probiotic Escherichia coli Nissle 1917. FEMS Microbiol Lett 362(20). pii: fnv166.  https://doi.org/10.1093/femsle/fnv166 (Epub 2015 Sep 13)CrossRefGoogle Scholar
  4. Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, Langella P, Bermúdez-Humarán LG (2013) Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 168(2):120–129.  https://doi.org/10.1016/j.jbiotec.2013.04.019CrossRefPubMedGoogle Scholar
  5. Bhardwaj R, Singh B, Bhat TK (2003) Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. J Basic Microbiol 43(6):449–461CrossRefGoogle Scholar
  6. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759CrossRefGoogle Scholar
  7. Chen SW, Zhong J, Huan LD (2007) Expression of human insulin in lactic acid bacteria and its oral administration in non-obese diabetic mice. Wei Sheng Wu Xue Bao. 47(6):987–991. ChineseGoogle Scholar
  8. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest. 124(8):3391–3406.  https://doi.org/10.1172/JCI72517CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choe DW, Loh TC, Foo HL, Hair-Bejo M, Awis QS (2012) Egg production, faecal pH and microbial population, small intestine morphology, and plasma and yolk cholesterol in laying hens given liquid metabolites produced by Lactobacillus plantarum strains. Br Poult Sci 53(1):106–115.  https://doi.org/10.1080/00071668.2012.659653CrossRefPubMedGoogle Scholar
  10. Curiel JA, Rodríguez H, Acebrón I, Mancheño JM, De Las Rivas B, Muñoz R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57(14):6224–6230.  https://doi.org/10.1021/jf901045sCrossRefPubMedGoogle Scholar
  11. de Las Rivas B, Rodríguez H, Anguita J, Muñoz R (2018) Bacterial tannases: classification and biochemical properties. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-018-9519-y (Epub ahead of print) ReviewCrossRefGoogle Scholar
  12. de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF, Nero LA, Todorov SD, Dos Santos KMO (2017) Functional Properties of Lactobacillus mucosae Strains Isolated from Brazilian Goat Milk Probiotics Antimicrob Proteins. 9(3):235–245.  https://doi.org/10.1007/s12602-016-9244-8CrossRefGoogle Scholar
  13. Dey B, Lagenaur LA, Lusso P (2013) Protein-based HIV-1 microbicides. Curr HIV Res 11(7):576–594CrossRefGoogle Scholar
  14. Fuentes-Garibay JA, Aguilar CN, Rodríguez-Herrera R, Guerrero-Olazarán M, Viader-Salvadó JM (2015) Tannase sequence from a xerophilic Aspergillus niger Strain and production of the enzyme in Pichia pastoris. Mol Biotechnol 57(5):439–447.  https://doi.org/10.1007/s12033-014-9836-zCrossRefPubMedGoogle Scholar
  15. Gomes AC, Bueno AA, de Souza RG, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutr J 17(13):60.  https://doi.org/10.1186/1475-2891-13-60CrossRefGoogle Scholar
  16. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 6(6):e21313.  https://doi.org/10.1371/journal.pone.0021313 (Epub 2011 Jun 17)CrossRefGoogle Scholar
  17. Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T). Syst Appl Microbiol 31(4):269–277.  https://doi.org/10.1016/j.syapm.2008.05.004 (Epub 2008 Jul 23)CrossRefPubMedGoogle Scholar
  18. Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF, Codoñer FM, Ramón D, Fernández L, Rodríguez JM (2015) Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women. J Hum Lact. 31(3):406–415.  https://doi.org/10.1177/0890334415585078 (Epub 2015 May 6)CrossRefGoogle Scholar
  19. Kareem KY, Loh TC, Foo HL, Akit H, Samsudin AA (2016) Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet Res. 12(1):163.  https://doi.org/10.1186/s12917-016-0790-9CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kareem KY, Loh TC, Foo HL, Asmara SA, Akit H (2017) Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult Sci 96(4):966–975.  https://doi.org/10.3382/ps/pew362CrossRefPubMedGoogle Scholar
  21. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 4:1829.  https://doi.org/10.1038/ncomms2852CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klein G, Schanstra JP, Hoffmann J, Mischak H, Siwy J, Zimmermann K (2013) Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products. PLoS ONE 8(6):e66682.  https://doi.org/10.1371/journal.pone.0066682CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B (2013) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71:23–34CrossRefGoogle Scholar
  24. Kumar M, Yadav A, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R (2016) Bioengineered probiotics as a new hope for health and diseases: Potential and prospects: An overview. Future Microbiology. 11:585–600CrossRefGoogle Scholar
  25. Lagenaur LA, Sanders-Beer BE, Brichacek B, Pal R, Liu X, Liu Y, Yu R, Venzon D, Lee PP, Hamer DH (2011) Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol 4(6):648–657.  https://doi.org/10.1038/mi.2011.30 (Epub 2011 Jul 6)CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li Y, Wang J, Yang J, Wan C, Wang X, Sun H (2014) Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr Purif 95:182–187.  https://doi.org/10.1016/j.pep.2013.12.011 (Epub 2014 Jan 4)CrossRefPubMedGoogle Scholar
  27. Makete G, Aiyegoro OA, Thantsha MS (2016) Isolation, identification and screening of potential probiotic bacteria in milk from South African Saanen goats. Probiotics Antimicrob. Proteins. 9:246–254CrossRefGoogle Scholar
  28. Maldonado NC, Silva de Ruiz C, Nader-Macías ME (2016) Design of a beneficial product for newborn calves by combining Lactobacilli, minerals, and vitamins. Prep Biochem Biotechnol. 46(7):648–56.  https://doi.org/10.1080/10826068.2015.1128447CrossRefGoogle Scholar
  29. Maldonado NC, Chiaraviglio J, Bru E, De Chazal L, Santos V, Nader-Macías MEF (2018) Effect of Milk Fermented with Lactic Acid Bacteria on Diarrheal Incidence, Growth Performance and Microbiological and Blood Profiles of Newborn Dairy Calves. Probiotics Antimicrob Proteins. 10(4):668–676.  https://doi.org/10.1007/s12602-017-9308-4CrossRefPubMedGoogle Scholar
  30. Mansour NM, Abdelaziz SA (2016) Oral Immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen. Microbiol Immunol.  https://doi.org/10.1111/1348-0421
  31. Martín V, Mañes-Lázaro R, Rodríguez JM, Maldonado-Barragán A (2011) Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol 61(Pt 5):1048–52.  https://doi.org/10.1099/ijs.0.021642-0 (Epub 2010 May 28)CrossRefGoogle Scholar
  32. Matoba Y, Tanaka N, Noda M, Higashikawa F, Kumagai T, Sugiyama M (2013) Crystallographic and mutational analyses of tannase from Lactobacillus plantarum. Proteins. 81(11):2052–2058.  https://doi.org/10.1002/prot.24355 (Epub 2013 Aug 23)CrossRefPubMedGoogle Scholar
  33. Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H, Kimura I (2016) The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 25(5):379–383.  https://doi.org/10.1097/MNH.0000000000000246CrossRefPubMedGoogle Scholar
  34. Ong ZY, Wiradharma N, Yang YY (2014) Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 23(78C):28–45.  https://doi.org/10.1016/j.addr.2014.10.013CrossRefGoogle Scholar
  35. Pakbaten B, Majidzadeh Heravi R, Kermanshahi H, Sekhavati MH, Javadmanesh A, Mohammadi Ziarat M (2018) Production of Phytase Enzyme by a Bioengineered Probiotic for Degrading of Phytate Phosphorus in the Digestive Tract of Poultry. Probiotics Antimicrob Proteins..  https://doi.org/10.1007/s12602-018-9423-xCrossRefGoogle Scholar
  36. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG (2016) The structure and diversity of human, animal and environmental resistomes. Microbiome. 4(1):54CrossRefGoogle Scholar
  37. Peng YF, Chen WC, Xiao K, Xu L, Wang L, Wan X (2016) DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria. PLoS One. 11(9):e0162861.  https://doi.org/10.1371/journal.pone.0162861 (eCollection 2016)CrossRefGoogle Scholar
  38. Petrova MI, van den Broek MFL, Spacova I, Verhoeven TLA, Balzarini J, Vanderleyden J, Schols D, Lebeer S (2018) Engineering Lactobacillus rhamnosus GG and GR-1 to express HIV-inhibiting griffithsin Int J Antimicrob Agents. 52(5):599–607.  https://doi.org/10.1016/j.ijantimicag.2018.07.013 (Epub 2018 Jul 21)CrossRefGoogle Scholar
  39. Rastmanesh R, Catanzaro R, Bomba A, Allegri F, Marotta F (2012) Potential of prebiotics and probiotics to enhance the efficacy of HIV vaccination: a working hypothesis. Clinic Pharmacol Biopharmaceut 1:1Google Scholar
  40. Ray S, Sherlock A, Wilken T, Woods T (2010) Cell wall lysed probiotic tincture decreases immune response to pathogenic enteric bacteria and improves 840 symptoms in autistic and immune compromised children. Explore 19:1–5Google Scholar
  41. Salva S, Villena J, Alvarez S (2010) Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: impact on intestinal and respiratory infections Int J Food Microbiol. 141(1–2):82–89.  https://doi.org/10.1016/j.ijfoodmicro.2010.03.013 (Epub 2010 Mar 18)CrossRefGoogle Scholar
  42. Sathesh-Prabu C, Lee SK (2015) Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils J Agric Food Chem. 63(37):8199–8208.  https://doi.org/10.1021/acs.jafc.5b03833 (Epub 2015 Sep 11)CrossRefGoogle Scholar
  43. Sharma D, Mal G, Kannan A, Bhar R, Sharma R, Singh B (2017) Degradation of euptox A by tannase-producing rumen bacteria from migratory goats. J Appl Microbiol 123(5):1194–1202.  https://doi.org/10.1111/jam.13563CrossRefPubMedGoogle Scholar
  44. Shenderov BA (2013) Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis. 24.  https://doi.org/10.3402/mehd.v24i0.20399 (eCollection 2013)
  45. Sichel L, Timoshok NA, Pidgorskyy VS, Spivak Y (2013) Study of interferonogenous activity of the new probiotic formulation Del-Immune V®. Journal of Probiotics and Health 1:2.  https://doi.org/10.4172/2329-8901.1000107CrossRefGoogle Scholar
  46. Singh B, Bhat TK, Sharma OP, Kanwar SS, Rahi P, Gulati A (2012) Isolation of tannase-producing Enterobacter ludwigii GRT-1 from the rumen of migratory goats. Small Ruminant Research. 102:172–176CrossRefGoogle Scholar
  47. Singh B, Mal G, Bharti D, Mohania M, Kumar M, Gautma SK, Marotta F, Yadav H, Nagpal R (2013) Probiotics in female reproductive health: paradigms, prospects and challenges. Current Women’s Health Reviews. 9:236–248Google Scholar
  48. Singh B, Mal G, Marotta F (2017) Designer Probiotics: Paving the Way to Living Therapeutics Trends Biotechnol. 35(8):679–682.  https://doi.org/10.1016/j.tibtech.2017.04.001CrossRefGoogle Scholar
  49. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355. Comment in Immunology. Therapeutic manipulation of gut flora. [Science. 2000]CrossRefGoogle Scholar
  50. Sun B, Wibowo D, Sainsbury F, Zhao CX (2018) Design and production of a novel antimicrobial fusion protein in Escherichia coli. Appl Microbiol Biotechnol 102(20):8763–8772.  https://doi.org/10.1007/s00253-018-9319-4 (Epub 2018 Aug 17)CrossRefPubMedGoogle Scholar
  51. Travers MA, Sow C, Zirah S, Deregnaucourt C, Chaouch S, Queiroz RM, Charneau S, Allain T, Florent I, Grellier P (2016) Deconjugated bile salts produced by extracellular bile-salt hydrolase-like activities from the probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth. Front Microbiol. 7:1453 (eCollection 2016)Google Scholar
  52. Ueda S, Nomoto R, Yoshida K, Osawa R (2014) Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus. BMC Microbiol 14:87.  https://doi.org/10.1186/1471-2180-14-87CrossRefGoogle Scholar
  53. von Ossowski I, Pietilä TE, Rintahaka J, Nummenmaa E, Mäkinen VM, Reunanen J, Satokari R, de Vos WM, Palva I, Palva A (2013) Using recombinant Lactococci as an approach to dissect the immunomodulating capacity of surface piliation in probiotic Lactobacillus rhamnosus GG. PLoS One 8(5):e64416. https://doi.org/10.1371/journal.pone.0064416. Print 2013 (2013 May 14)CrossRefGoogle Scholar
  54. Wibowo D, Zhao CX (2018) Recent achievements and perspectives for large-scale recombinant production of antimicrobialpeptides. Appl Microbiol Biotechnol  https://doi.org/10.1007/s00253-018-9524-1CrossRefGoogle Scholar
  55. Zhao CX, Dwyer MD, Yu AL, Wu Y, Fang S, Middelberg AP (2015) A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol Bioeng 112(5):957–964.  https://doi.org/10.1002/bit.25505 (Epub 2015 Jan 2)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations