Advertisement

Marine Bioresources—Animals and Veterinary Applications

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter

Abstract

The marine life constituting around one-half of the global biodiversity serves as a rich source of bioactive ingredients for health and industrial applications. Indeed, the vast majority of the marine microorganisms is only partly explored.

Highlights
  • Marine ecosystem comprises of a vast category of microorganisms, majority of which is poorly understood

  • The marine microorganisms are treasure of valuable microbes and microbial metabolites

  • It is high time to harness marine biodiversity and bioresources.

Keywords

Marine biome Marine microorganisms Metagenomics Bioactive molecules Bryozoan Molluscs 

References

  1. Amiri Moghaddam J, Crüsemann M, Alanjary M, Harms H, Dávila-Céspedes A, Blom J, Poehlein A, Ziemert N, König GM, Schäberle TF (2018) Analysis of the genome and metabolome of marine myxobacteria reveals high potential for biosynthesis of novel specialized metabolites. Sci Rep 8(1):16600.  https://doi.org/10.1038/s41598-018-34954-yPubMedPubMedCentralCrossRefGoogle Scholar
  2. Benoit-Vical F, Saléry M, Soh PN, Ahond A, Poupat C (2008) Girolline: a potential lead structure for antiplasmodial drug research. Planta Med 74(4):438–444.  https://doi.org/10.1055/s-2008-1034348PubMedCrossRefGoogle Scholar
  3. Brunden KR, Gardner NM, James MJ, Yao Y, Trojanowski JQ, Lee VM, Paterson I, Ballatore C, Smith AB 3rd (2013) MT-stabilizer, dictyostatin, exhibits prolonged brain retention and activity: potential therapeutic implications. ACS Med Chem Lett 4(9):886–889.  https://doi.org/10.1021/ml400233e (eCollection)PubMedPubMedCentralCrossRefGoogle Scholar
  4. Burdge G, Leach H, Walsh K (2018) Ziconotide-induced psychosis: A case report and literature review. Ment Health Clin 8(5):242–246.  https://doi.org/10.9740/mhc.2018.09.242 (eCollection)PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL (2018) Recent advances in microtubule-stabilizing agents. Eur J Med Chem. 143:806–828.  https://doi.org/10.1016/j.ejmech.2017.11.062 (Epub 2017 Nov 24. Review)PubMedCrossRefGoogle Scholar
  6. Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R (2017) marine mollusk-derived agents with antiproliferative activity as promising anticancer agents to overcome chemotherapy resistance. Med Res Rev. 37(4):702–801.  https://doi.org/10.1002/med.21423 (Epub 2016 Dec 7. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  7. Correia-da-Silva M, Sousa E, Pinto MMM, Kijjoa A (2017) Anticancer and cancer preventive compounds from edible marine organisms. Semin Cancer Biol 46:55–64.  https://doi.org/10.1016/j.semcancer.2017.03.011 (Epub 2017 Apr 7. Review)PubMedCrossRefGoogle Scholar
  8. Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez-Paloma L, Riccio R, Dragmacidin F (2000) A new antiviral bromoindole alkaloid from the mediterranean sponge Halicortex sp. Tetrahedron 56:3743–3748CrossRefGoogle Scholar
  9. D’Ambrosio M, Guerriero A, Deharo E, Debitus C, Munoz V, Pietra F (1998) New types of potentially antimalarial agents: epidioxy-substituted norditerpene and norsesterpenes from the marine sponge Diacarnus levii. Helv Chim Acta 81:1285–1292CrossRefGoogle Scholar
  10. Engene N, Tronholm A, Salvador-Reyes LA, Luesch H, Paul VJ (2015) Caldora penicillata gen. nov., comb. nov. (cyanobacteria), a pantropical marine species with biomedical relevance. J Phycol 51(4):670–681PubMedPubMedCentralCrossRefGoogle Scholar
  11. Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C (2018) Biotechnological applications of bioactive peptides from marine sources. Adv Microb Physiol 73:171–220.  https://doi.org/10.1016/bs.ampbs.2018.05.002 (Epub 2018 Jun 20)PubMedCrossRefGoogle Scholar
  12. Hansen KØ, Isaksson J, Bayer A, Johansen JA, Andersen JH, Hansen E (2017) Securamine derivatives from the arctic bryozoan securiflustra securifrons. J Nat Prod 80(12):3276–3283.  https://doi.org/10.1021/acs.jnatprod.7b00703PubMedCrossRefGoogle Scholar
  13. Hertiani T, Edrada-Ebel R, Ortlepp S, van Soest RW, de Voogd NJ, Wray V, Hentschel U, Kozytska S, Müller WE, Proksch P (2010) From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg Med Chem 18(3):1297–1311.  https://doi.org/10.1016/j.bmc.2009.12.028 (Epub 2010 Jan 12)PubMedCrossRefGoogle Scholar
  14. Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10(4):629–631.  https://doi.org/10.1021/ol702952n (Epub 2008 Jan 19)PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hughes CC, Kauffman CA, Jensen PR, Fenical W (2010) Structures, reactivities, and antibiotic properties of the marinopyrroles A–F. J Org Chem 75(10):3240–3250.  https://doi.org/10.1021/jo1002054PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27(7):1048–1065.  https://doi.org/10.1039/c000535e (Epub 2010 May 4. Review)PubMedCrossRefGoogle Scholar
  17. Li T, Ding T, Li J (2017) Medicinal purposes: bioactive metabolites from marine-derived organisms. Mini Rev Med Chem.  https://doi.org/10.2174/1389557517666170927113143CrossRefGoogle Scholar
  18. Matthew S, Ross C, Rocca JR, Paul VJ, Luesch H (2007) Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 70(1):124–127PubMedCrossRefGoogle Scholar
  19. Matsunaga S, Fusetani N, Konosu S (1985) Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. J Nat Prod 48(2):236–241PubMedCrossRefGoogle Scholar
  20. Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265.  https://doi.org/10.1016/j.tips.2010.02.005PubMedCrossRefGoogle Scholar
  21. Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N (2017) Marine pharmacology in 2012–2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 15(9). pii: E273.  https://doi.org/10.3390/md15090273PubMedCentralCrossRefGoogle Scholar
  22. Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, Astudillo-Garcia C, Easson C, Sipkema D, Liu F, Steinert G, Kotoulas G, McCormack GP, Feng G, Bell JJ, Vicente J, Björk JR, Montoya JM, Olson JB, Reveillaud J, Steindler L, Pineda MC, Marra MV, Ilan M, Taylor MW, Polymenakou P, Erwin PM, Schupp PJ, Simister RL, Knight R, Thacker RW, Costa R, Hill RT, Lopez-Legentil S, Dailianis T, Ravasi T, Hentschel U, Li Z, Webster NS, Thomas T (2017) The sponge microbiome project. Gigascience 6(10):1–7.  https://doi.org/10.1093/gigascience/gix077PubMedCrossRefGoogle Scholar
  23. Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421CrossRefGoogle Scholar
  24. Nunnery JK, Mevers E, Gerwick WH (2010a) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21(6):787–793.  https://doi.org/10.1016/j.copbio.2010.09.019 (Epub 2010 Oct 26)PubMedPubMedCentralCrossRefGoogle Scholar
  25. Nunnery JK, Mevers E, Gerwick WH (2010b) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21(6):787–793.  https://doi.org/10.1016/j.copbio.2010.09.019 (Epub 2010 Oct 26. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  26. Pena-Francesch A, Demirel MC (2019) Squid-inspired tandem repeat proteins: functional fibers and films. Front Chem (in press).  https://doi.org/10.3389/fchem.2019.00069
  27. Peng A, Qu X, Liu F, Li X, Li E, Xie W (2018) Angucycline glycosides from an intertidal sediments strain Streptomyces sp. and their cytotoxic activity against hepatoma carcinoma cells. Mar Drugs 16(12). pii: E470.  https://doi.org/10.3390/md16120470PubMedCentralCrossRefGoogle Scholar
  28. Pettit RK, Fakoury BR, Knight JC, Weber CA, Pettit GR, Cage GD, Pon S (2004) Antibacterial activity of the marine sponge constituent cribrostatin 6. J Med Microbiol 53(Pt 1):61–65PubMedCrossRefGoogle Scholar
  29. Raccor BS, Vogt A, Sikorski RP, Madiraju C, Balachandran R, Montgomery K, Shin Y, Fukui Y, Jung WH, Curran DP, Day BW (2008) Cell-based and biochemical structure-activity analyses of analogs of the microtubule stabilizer dictyostatin. Mol Pharmacol 73(3):718–726 (Epub 2007 Dec 11)PubMedCrossRefGoogle Scholar
  30. Rao VK, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314–1318PubMedPubMedCentralCrossRefGoogle Scholar
  31. Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D, Süssmuth RD, Fiedler HP (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 57(4):271–279CrossRefGoogle Scholar
  32. Ruan BF, Zhu HL (2012) The chemistry and biology of the bryostatins: potential PKC inhibitors in clinical development. Curr Med Chem 19(16):2652–2664PubMedCrossRefGoogle Scholar
  33. Safaeinejad F, Bahrami S, Redl H, Niknejad H (2018) Inhibition of inflammation, suppression of matrix metalloproteinases, induction of neurogenesis, and antioxidant property make bryostatin-1 a therapeutic choice for multiple sclerosis. Front Pharmacol 9:625.  https://doi.org/10.3389/fphar.2018.00625 (eCollection)PubMedPubMedCentralCrossRefGoogle Scholar
  34. Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N (2010) Approaches for the synthesis of functionalized cryptophycins. J Org Chem 75(20):6953–6960.  https://doi.org/10.1021/jo101563sPubMedCrossRefGoogle Scholar
  35. Schiller L, Bailey M, Jacquet J, Sala E (2018) High seas fisheries play a negligible role in addressing global food security. Sci Adv 4(8):eaat8351.  https://doi.org/10.1126/sciadv.aat8351 (eCollection 2018 Aug)PubMedPubMedCentralCrossRefGoogle Scholar
  36. Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. J Nat Prod 66(9):1291–1293PubMedCrossRefGoogle Scholar
  37. Tian XR, Tang HF, Tian XL, Hu JJ, Huang LL, Gustafson KR (2018) Review of bioactive secondary metabolites from marine bryozoans in the progress of new drugs discovery. Future Med Chem 10(12):1497–1514.  https://doi.org/10.4155/fmc-2018-0012 (Epub 2018 May 23)PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ueno S, Yanagita RC, Murakami K, Murakami A, Tokuda H, Suzuki N, Fujiwara T, Irie K (2012) Identification and biological activities of bryostatins from Japanese bryozoan. Biosci Biotechnol Biochem 76(5):1041–1043PubMedCrossRefGoogle Scholar
  39. Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H (2018) Variations in microbial diversity and metabolite profiles of the tropical marine sponge xestospongia muta with season and depth. Microb Ecol.  https://doi.org/10.1007/s00248-018-1285-yPubMedCrossRefGoogle Scholar
  40. Wallace MS, Kosek PS, Staats P, Fisher R, Schultz DM, Leong M (2008) Phase II, open-label, multicenter study of combined intrathecal morphine and ziconotide: addition of ziconotide in patients receiving intrathecal morphine for severe chronic pain. Pain Med 9(3):271–281.  https://doi.org/10.1111/j.1526-4637.2007.00355.xPubMedCrossRefGoogle Scholar
  41. Wiese J, Imhoff JF (2018) Marine bacteria and fungi as promising source for new antibiotics. Drug Dev Res.  https://doi.org/10.1002/ddr.21482PubMedCrossRefGoogle Scholar
  42. Williams P, Sorribas A, Liang Z (2010) New methods to explore marine resources for Alzheimer’s therapeutics. Curr Alzheimer Res 7(3):210–213 (Review)PubMedPubMedCentralCrossRefGoogle Scholar
  43. Wu Y, Chen Y, Huang X, Pan Y, Liu Z, Yan T, Cao W, She Z (2018) α-glucosidase inhibitors: diphenyl ethers and phenolic bisabolane sesquiterpenoids from the mangrove endophytic fungus Aspergillus flavus QQSG-3. Mar Drugs 16(9). pii: E307.  https://doi.org/10.3390/md16090307PubMedCentralCrossRefGoogle Scholar
  44. Wyche TP, Hou Y, Braun D, Cohen HC, Xiong MP, Bugni TS (2011) First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J Org Chem 76(16):6542–6547.  https://doi.org/10.1021/jo200661nPubMedPubMedCentralCrossRefGoogle Scholar
  45. Wyche TP, Alvarenga RFR, Piotrowski JS, Duster MN, Warrack SR, Cornilescu G, De Wolfe TJ, Hou Y, Braun DR, Ellis GA, Simpkins SW, Nelson J, Myers CL, Steele J, Mori H, Safdar N, Markley JL, Rajski SR, Bugni TS (2017) Chemical genomics, structure elucidation, and in vivo studies of the marine-derived anticlostridial ecteinamycin. ACS Chem Biol 12(9):2287–2295.  https://doi.org/10.1021/acschembio.7b00388PubMedPubMedCentralCrossRefGoogle Scholar
  46. Yang X, Davis RA, Buchanan MS, Duffy S, Avery VM, Camp D, Quinn RJ (2010) Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J Nat Prod 73(5):985–987.  https://doi.org/10.1021/np900834gPubMedCrossRefGoogle Scholar
  47. Yokosaka S, Izawa A, Sakai C, Sakurada E, Morita Y, Nishio Y (2018) Synthesis and evaluation of novel dolastatin 10 derivatives for versatile conjugations. Bioorg Med Chem 26(8):1643–1652.  https://doi.org/10.1016/j.bmc.2018.02.011PubMedCrossRefGoogle Scholar
  48. Yurchenko EA, Menchinskaya ES, Pislyagin EA, Trinh PTH, Ivanets EV, Smetanina OF, Yurchenko AN (2018) Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced Parkinson’s disease models. Mar Drugs 16(11). pii: E457.  https://doi.org/10.3390/md16110457PubMedCentralCrossRefGoogle Scholar
  49. Zhou W, Nie XD, Zhang Y, Si CM, Zhou Z, Sun X, Wei BG (2017) A practical approach to asymmetric synthesis of dolastatin 10. Org Biomol Chem 15(29):6119–6131.  https://doi.org/10.1039/c7ob01395gPubMedCrossRefGoogle Scholar
  50. Zhu A, Zhang XW, Zhang M, Li W, Ma ZY, Zhu HJ, Cao F (2018) Aspergixanthones IK, New anti-vibrio prenylxanthones from the marine-derived fungus Aspergillus sp. ZA-01. Mar Drugs 16(9). pii: E312.  https://doi.org/10.3390/md16090312PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations