Advertisement

Marginal Ice Zone and Ice-Air-Ocean Interactions

  • Ola M. JohannessenEmail author
  • Stein Sandven
  • Richard Davy
  • Einar O. Olason
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Marginal Ice Zone. A Brief Review

  • Ola M. Johannessen
  • Stein Sandven

The section review major experiments carried out in the Marginal Zone (MIZ), (Sect. 3.1.2), and the mesoscale processes along the ice edge in the Fram Strait, Greenland and Barents Seas such as the Polar Ocean Fronts in the Greenland and Barents Seas (Sect. 3.1.3), ice-ocean eddies (Sect. 3.1.4), ice edge upwelling (Sect. 3.1.5), internal waves in the MIZ (Sect. 3.1.6), the future of MIZ (Sect. 3.1.7) before concluding with a Summary of the section (Sect. 3.1.8).

Introduction

The Marginal Ice Zone (MIZ) is the crucial region in which the polar air, ice and ocean interact. The exchanges which take place in the MIZ profoundly influence hemispheric climate system (Johannessen et al. 2004, 2016) and have also significant effects on fisheries (Drinkwater et al. 2014), shipping, petroleum exploration and production, tourism and naval operation (Johannessen et al. 1992, 2003, 2007). The MIZ is located where sea ice and open...

References

  1. Aagaard, K., & Carmack, E. C. (1989). The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94, 14485–14498.  https://doi.org/10.1029/JC094iC10p14485.CrossRefGoogle Scholar
  2. Aagaard, K., Coachman, L. K., & Carmack, E. (1981). On the halocline of the Arctic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 28(6), 529–545.CrossRefGoogle Scholar
  3. Anderson, L. G., Andersson, P. S., Björk, G., Peter Jones, E., Jutterström, S., & Wåhlström, I. (2013). Source and formation of the upper halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans, 118, 410–421.  https://doi.org/10.1029/2012JC00829.CrossRefGoogle Scholar
  4. Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., & Businger, J. A. (1979). The turbulent heat flux from arctic leads. Boundary-Layer Meteorology, 17, 57–91.  https://doi.org/10.1007/BF00121937.CrossRefGoogle Scholar
  5. Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science, Series 5, 41(251), 237–276.CrossRefGoogle Scholar
  6. Beare, R. J., Macvean, M. K., Holtslag, A. A., Cuxart, J., Esau, I., Golaz, J. C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., & Lund, T. S. (2006). An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorology, 118(2), 247–272.CrossRefGoogle Scholar
  7. Bintanja, R., & Andry, O. (2017). Towards a rain-dominated Arctic. Nature Climate Change, 7, 263–267.CrossRefGoogle Scholar
  8. Buckley, J. R., Gammelsrød, T., Johannessen, J. A., Johannessen, O. M., & Røed, L. P. (1979). Upwelling; oceanic structure at the edge of the arctic ice pack in winter. Science, 203(4376), 165–167.CrossRefGoogle Scholar
  9. Chernokulsky, A. V., Esau, I., Bulygina, O. N., Davy, R., Mokhov, I. I., Outten, S., & Semenov, V. A. (2017). Climatology and interannual variability of cloudiness in the Atlantic Arctic from surface observations since the late nineteenth century. Journal of Climate, 30, 2103–2120.CrossRefGoogle Scholar
  10. Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated decline in the Arctic Sea ice cover. Geophysical Research Letters, 35(1), L01703.CrossRefGoogle Scholar
  11. Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., & Griffiths, C. (2005). Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research: Oceans, 110(C12), C12005.CrossRefGoogle Scholar
  12. Curry, B., Lee, C. M., Petrie, B., Moritz, R. E., & Kwok, R. (2014). Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10∗. Journal of Physical Oceanography, 44, 1244–1266.  https://doi.org/10.1175/JPO-D-13-0177.1.CrossRefGoogle Scholar
  13. Davy, R., & Esau, I. (2016). Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nature Communications, 7, 11690.CrossRefGoogle Scholar
  14. Ding, Q., Schweiger, A., L’Heureux, M., Battisti, D. S., Po-Chedley, S., Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman, R., & Steig, E. J. (2017). Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7(4), 289.CrossRefGoogle Scholar
  15. Drinkwater, K. F., Miles, M., Medhaug, I., Otterå, O. D., Kristiansen, T., Sundby, S., & Gao, Y. (2014). The Atlantic multidecadal oscillation: Its manifestations and impacts with special emphasis onthe Atlantic region north of 60°N. Journal of Marine Systems, 133, 117–130.  https://doi.org/10.1016/j.jmarsys.2013.11.001.CrossRefGoogle Scholar
  16. Esau, I. N. (2007). Amplification of turbulent exchange over wide Arctic leads: Large-eddy simulation study. Journal of Geophysical Research: Atmospheres, 112(D8), D08109.CrossRefGoogle Scholar
  17. Fennel, W., & Johannessen, O. M. (1998). Wind forced oceanic responses near ice edges revisited. Journal of Marine Systems, 14(1–2), 57–79.CrossRefGoogle Scholar
  18. Ferrari, C. P., Gauchard, P. A., Aspmo, K., Dommergue, A., Magand, O., Bahlmann, E., Nagorski, S., Temme, C., Ebinghaus, R., Steffen, A., & Banic, C. (2005). Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmospheric Environment, 39(39), 7633–7645.CrossRefGoogle Scholar
  19. Frajka-Williams, E., Beaulieu, C., & Duchez, A. (2017). Emerging negative Atlantic multidecadal oscillation index in spite of warm subtropics. Scientific Reports, 7(1), 11224.  https://doi.org/10.1038/s41598-017-11046-x.CrossRefGoogle Scholar
  20. Gammelsrød, T., Mork, M., & Røed, L. P. (1975). Upwelling possibilities at the ice edge, homogeneous model. Marine Science Communications, 1, 115–145.Google Scholar
  21. Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., Bosveld, F. C., Cuxart, J., Lindvall, J., Steeneveld, G. J., & Tjernström, M. (2013). Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bulletin of the American Meteorological Society, 94(11), 1691–1706.CrossRefGoogle Scholar
  22. IPCC: Climate Change 2007. (2007). In S. Solomon, D. Quin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. 996 p.Google Scholar
  23. IPCC: Climate Change 2013. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge., 1535 p: Cambridge University Press.  https://doi.org/10.1017/CBO9781107415324.CrossRefGoogle Scholar
  24. Johannessen, O. M. (1986). Brief overview of the physical oceanography. In B. G. Hurdle (Ed.), The nordic seas (pp. 104–127). New York: Springer.Google Scholar
  25. Johannessen, O. M. (1987). Introduction: Summer marginal ice zone experiments during 1983 and 1984 in the Fram Strait and the Greenland Sea. Journal of Geophysical Research, 92(C7), 6716–6718.  https://doi.org/10.1029/JC092iC07p06716.CrossRefGoogle Scholar
  26. Johannessen, O. M. (2008). Decreasing arctic sea ice mirrors increasing CO2 on decadal time scale. Atmospheric and Oceanic Science Letter (AOSL), 1(1), 51–56.CrossRefGoogle Scholar
  27. Johannessen O. M. (2011). Arctic climate – Present and future perspectives. Given at the symposium to honour the scientific works of Klaus Hasselmann on his 80 years birth day, 9–10 November 2011, Hamburg, Germany. Can be downloaded from Research Gate.Google Scholar
  28. Johannessen, O. M., & Foster, L. A. (1978). A note on the topographically controlled oceanic polar front in the Barents Sea. Journal of Geophysical Research, Ocean Front Issue, 83(C9), Ser. 30.  https://doi.org/10.1029/JC083iC09p04567.CrossRefGoogle Scholar
  29. Johannessen, O. M., Johannessen, J. A., Morison, J., Farrelly, B. A., & Svendsen, E. A. (1983). Oceanographic conditions in the marginal ice zone north of Svalbard in early fall 1979 with emphasis on mesoscale process. Journal of Geophysical Research, 88(C5), 2755–2770.  https://doi.org/10.1029/JC088iC05p02755.CrossRefGoogle Scholar
  30. Johannessen, O. M., Johannessen, J. A., Farrelly, B. A., Kloster, K., & Shuchman, R. H (1984). Eddy studies during MIZEX 83 by ship and remote sensing observations. In Proceedings of the IGARSS 84 Symposium, ESA SP-215, Strasbourg, 27–30 August 1984.Google Scholar
  31. Johannessen, O. M., Johannessen, J. A., Sandven, S., & Davidson, K. L. (1986). Preliminary results of the Marginal Ice Zone Experiment (MIZEX) summer operations. In B. G. Hurdle (Ed.), The Nordic Seas (pp. 665–679). New York: Springer Verlag.CrossRefGoogle Scholar
  32. Johannessen, O. M., Johannessen, J. A., Svendsen, E., Shuchmann, R. A., Campbell, W. J., & Josberger, E. (1987a). Ice-edge eddies in the Fram Strait marginal ice zone. Science, 236(4800), 427–429.  https://doi.org/10.1126/science.236.4800.427.CrossRefGoogle Scholar
  33. Johannessen, J. A., Johannessen, O. M., Svendsen, E., Shuchman, R., Manley, T., Campbell, W. J., Josberger, E. G., Sandven, S., Gascard, J. C., Olaussen, T., Davidson, K., & Van Leer, J. (1987b). Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiment. Journal of Geophysical Research, 92(C7), 6754–6772.  https://doi.org/10.1029/JC092iC07p06754.CrossRefGoogle Scholar
  34. Johannessen, O. M., Johannessen, J. A., Sandven, S., Olaussen, T., Geiger, K., Skagseth, O., Kovacs, Z., Karpuz, R., Haugan, P. M., Bittner, K., Samuel, P., Pettersson, L. H., Kloster, K., Johannessen, C. E., Sagen, H., Nytun, K., Svendsen, F., Shuchman, R., Onstott, R., Gaboury, S., Sutherland, L., Gloersen, P., Davidson, K., Helvey, R., Spiel, D., Blake, W., Woehler, K., Skupniewicz, C., Borrmann, S., Campbell, W.J., Josberger, E. G., Danes, F., Grenfell, T., Wensman, M., Horrigmoe, G., Jargensen, K. A., Kristiansen, E., Blankvov, A., Linder, B., O’Hara, S., Lamont, J. A., Bendiksen, B., Engelsen, I., Foche, K., Starke, K., Preller, R., Rottier, P., & Horn, D. (1989). SIZEX 89 Experiment report. NRSC Technical Report no. 23.Google Scholar
  35. Johannessen, O. M., Campbell, W. J., Shuchman, R. A., Sandven, S., Gloersen, P., Johannessen, J. A., Josberger, E. G., & Haugan, P. M. (1992). Microwave study programs of air-ice-ocean interactive processes in the seasonal ice zone of the Greenland and Barents seas. In F. Carsey (Ed.), Microwave remote sensing of sea ice (Geophysical Monograph 68) (pp. 261–289). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  36. Johannessen, O. M, Sandven, S., Campbell, W. J., & Shuchman, R. (1993). Ice studies in the Barents Sea by ERS-1 SAR during SIZEX 92. In Proceedings of the First ERS-1 symposium – space at the service of our environment, Cannes, France, 4–6 November 1992, ESA SP-359 (pp. 277–282).Google Scholar
  37. Johannessen, O. M., Sandven, S., Budgell, W. P., Johannessen, J. A., & Suchman, R. (1994). Observation and simulation of ice tongues and vortex-pairs in the marginal ice zone. In O. M. Johannessen, R. Muench, & J. E. Overland (Eds.), The polar oceans and their role in shaping the global environment (The Nansen Centennial Volume, Geophysical Monograph 85) (Vol. 1994, pp. 109–136). Washington, DC: AGU.CrossRefGoogle Scholar
  38. Johannessen, O. M., Sagen, H., Sandven, S., & Stark, K. V. (2003). Hotspots in ambient noise caused by ice-edge eddies in the Greenland Sea and the Barents seas. IEEE Journal of Oceanic Engineering, 28(2), 212–228.CrossRefGoogle Scholar
  39. Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V. A., Alekseev, G. V., Nagurny, A. P., Zakharov, V. F., Bobylev, L. P., Pettersson, L. H., Hasselmann, K., & Cattle, H. P. (2004). Arctic climate change: Observed and modelled temperature and sea ice variability. Tellus, Dynamic Meteorology and Oceanography. Series A, 56A(4), 328–341.CrossRefGoogle Scholar
  40. Johannessen, O. M., Alexandrov, V. Y., Frolov, I. Y., Bobylev, L. P., Sandven, S., Pettersson, L. H., Kloster, K., Smirnov, V. G., Mironov, Y. U., & Babich, N. G. (2007). Remote sensing of sea ice in the northern sea route: Studies and applications. Chichester: Springer–Praxis Publishing. 477 p.Google Scholar
  41. Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., & Miles, M. W. (2016). Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalasation. Tellus A, 68, 28234.  https://doi.org/10.3402/tellusa.v68.28234.CrossRefGoogle Scholar
  42. Johannessen, O. M., Sandven, S., Chunchuzov, I. P., & Suchman, R. (2018). Observations of internal waves in the marginal ice zone generated by an anticyclonic eddy: A case study. Tellus A: Dynamic Meteorology & Oceanography, in review.Google Scholar
  43. Jones, E. P., & Anderson, L. G. (1986). On the origin of the chemical properties of the Arctic Ocean Halocline. Journal of Geophysical Research, 91, 10759–10767.CrossRefGoogle Scholar
  44. Kohout, A. L., Williams, M. J. M., Dean, S. M., & Meylan, M. H. (2014). Storm-Induced Sea-ice breakup and the implications for ice extent. Nature, 509(7502), 604.CrossRefGoogle Scholar
  45. Kopec, B. G., Feng, X., Michel, F. A., & Posmentier, E. S. (2016). Influence of sea ice on Arctic precipitation. PNAS, 113(1), 46–51.CrossRefGoogle Scholar
  46. Kwok, R., Spreen, G., & Pang, S. (2013). Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118(5), 2408–2425.Google Scholar
  47. Landy, J. C., Ehn, J. K., & Barber, D. G. (2015). Albedo feedback enhanced by smoother Arctic sea ice. Geophysical Research Letters, 42(24), 10714–10720.  https://doi.org/10.1002/2015GL066712.CrossRefGoogle Scholar
  48. Mahrt, L. (2014). Stably stratified atmospheric boundary layers. Annual Review of Fluid Mechanics, 46, 23–45.CrossRefGoogle Scholar
  49. Maykut, G. A. (1986). The surface heat and mass balance. In N. Untersteiner (Ed.), The geophysics of sea ice (NATO ASI Series) (pp. 395–463). New York: Springer.CrossRefGoogle Scholar
  50. Mazzola, M., Tampieri, F., Viola, A. P., Lanconelli, C., & Choi, T. (2016). Stable boundary layer vertical scales in the Arctic: Observations and analyses at Ny-Ålesund, Svalbard. Quarterly Journal of the Royal Meteorological Society, 142(696), 1250–1258.  https://doi.org/10.1002/qj.2727.CrossRefGoogle Scholar
  51. McPhee, M., Kwok, R., Robins, R., & Coon, M. (2005). Upwelling of Arctic pycnocline associated with shear motion of sea ice. Geophysical Research Letters, 32, L10616.  https://doi.org/10.1029/2004GL021819.CrossRefGoogle Scholar
  52. Melberg, L. E., Johannessen, O. M., Connors, D. N., Botseas, G., & Browning, D. (1987). Modeled acoustic propagation through an ice edge Eddy in the East Greenland Sea Marginal Ice Zone. Journal of Geophysical Research, 92(C7), 6857–6868.  https://doi.org/10.1029/JC092iC07p06857.CrossRefGoogle Scholar
  53. Melberg, L. E., Johannessen, O. M., Connors, D. N., Botseas, G., & Browning, D. (1991). Acoustic propagation in the western Greenland Sea frontal zone. Journal of Acoustical Society America, 89(5), 2144–2156.CrossRefGoogle Scholar
  54. MIZEX Group 86, Johannessen, O. M., Horn, D. A., Augstein, E., Baggeroer, A. B., Burns, B. A., Campbell, W. J., Davidson, K. L., Duckworth, G. L., Dyer, I., Farrelly, B. A., Grenfell, T., Heiberg, A., Hibler, W. D., III, & Johannessen, J. A. (1986). MIZEX East 83/84, the summer marginal ice zone program in the Fram Strait/Greenland Sea. EOS Transactions, American Geophysical Union, 67(23), 513–517. including cover.CrossRefGoogle Scholar
  55. MIZEX Group 87, Johannessen, O. M., Shuchman, R. A., Johannessen, J. A., Sandven, S., Olaussen, T. I., Petterson, L. H., Horn, D. A., Bell, D. L., Grenfell, T. C., Brightman, R. I., Davidson, K. A., Guest, P. S., Gow, A. J., Meincke, J., Perovich, D. K., Quadfasel, D., Smith, S. L., Smith, W. O., Sutherland, L. L., & Tucker, W. B. (1989). MIZEX East 1987: Winter marginal ice zone program in the Fram Strait and Greenland Sea. EOS Transactions, American Geophysical Union, 70(17), 545–555.  https://doi.org/10.1029/89EO00131.CrossRefGoogle Scholar
  56. Morison, J. (1986). Internal waves in the Arctic Ocean: A review. In N. Untersteiner (Ed.), The geophysics of sea ice (NATO ASI Series (Series B: Physics)). Boston: Springer.  https://doi.org/10.1007/978-1-4899-5352-0_20.CrossRefGoogle Scholar
  57. Morison, J. H., & McPhee, M. G. (1998). Lead convection measured with an autonomous underwater vehicle. Journal of Geophysical Research: Oceans, 103, 3257–3281.  https://doi.org/10.1029/97JC02264.CrossRefGoogle Scholar
  58. Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. (2012). Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5(1), 11.CrossRefGoogle Scholar
  59. Munk, W. (1981). Internal waves and small scale processes. In B. A. Warren & C. Wunsch (Eds.), Evolution of physical oceanography scientific surveys in honor of Henry Stommel (pp. 264–291). Cambridge, MA: The MIT Press.Google Scholar
  60. Nakamura, T., Yamazaki, K., Honda, M., Ukita, J., Jaiser, R., Handorf, D., & Dethloff, K. (2016). On the atmospheric response experiment to a Blue Arctic Ocean. Geophysical Research Letters, 43(19).Google Scholar
  61. Nansen, F. (1902). The Norwegian polar expedition 1893–1896. Scientific Results, 3, 346–351.Google Scholar
  62. NORSEX Group, Johannessen, O. M., Campnell, W. J., Farrelly, B. A., Johannessen, J. A., Johannessen, O. M., Svendsen, E., Kloster, K., Horjen, I., Mätzler, C., Campbell, W. J., Crawford, J., Harrington, R., Jones, L., Swift, C., Delnore, V. E., Cavalieri, D., Gloersen, P., Hsiao, S. V., Shemdin, O. H., Thomson, T. W., & Ramseier, R. O. (1983). Norwegian remote sensing experiment in a marginal ice zone. Science, 220(4599), 781.CrossRefGoogle Scholar
  63. Oltmans, S. J., Johnson, B. J., & Harris, J. M. (2012). Springtime boundary layer ozone depletion at Barrow, Alaska: Meteorological influence, year-to-year variation, and long-term change. Journal of Geophysical Research: Atmospheres, 117(D1 4), D00R18.Google Scholar
  64. Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., & Nilsen, F. (2014). Loss of sea ice during winter north of Svalbard. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 23933.  https://doi.org/10.3402/tellusa.v66.23933.CrossRefGoogle Scholar
  65. Parkinson, C. L., & Comiso, J. C. (2013). On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophysical Research Letters, 40(7), 1356–1361.CrossRefGoogle Scholar
  66. Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3), 181.CrossRefGoogle Scholar
  67. Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., & Krishfield, R. (2017). Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356(6335), 285–291.CrossRefGoogle Scholar
  68. Rampal, P., Weiss, J., & Marsan, D. (2009). Positive trend in the mean speed and deformation rate of Arctic Sea ice, 1979–2007. Journal of Geophysical Research: Oceans, 114(C5), C05013.CrossRefGoogle Scholar
  69. Roed, L. P., & O’Brien, J. J. (1983). A coupled ice-ocean model of upwelling in the marginal ice zone. Journal of Geophysical Research, 88(C5), 2863–2872.CrossRefGoogle Scholar
  70. Rudels, B. (2012). Arctic Ocean circulation and variability-advection and external forcing encounter constraints and local processes. Ocean Science.Google Scholar
  71. Rudels, B., Marnela, M., & Eriksson, P. (2008). Constraints on estimating mass, heat and freshwater transports in the Arctic Ocean: An exercise. In Arctic-subarctic ocean fluxes (pp. 315–341). Dordrecht: Springer.CrossRefGoogle Scholar
  72. Sandven, S., & Johannessen, O. M. (1987). High-frequency internal wave observations in the marginal ice zone. Journal of Geophysical Research, 92, 6911–6920.CrossRefGoogle Scholar
  73. Sandven, S., & Johannessen, O. M (1989). Ice edge motion during MIZEX 87. In Proceedings of IGARSS ‘89, Vancouver, Canada, July 10 – 14, 1989, Vol. 3, 1535-1538, IEEE Conference Publications 1989.Google Scholar
  74. Sandven, S., Kovacs, Z., Geiger, C., Olaussen, T. I., & Johannessen, O. M. (1988). MIZEX’87: CTD Data Report from Polar Circle. NRSC Technical Report no. 13.Google Scholar
  75. Sandven, S., Johannessen, O. M., Miles, M. W., Pettersson, L. H., & Kloster, K. (1999). Barents Sea seasonal ice zone features and processes from ERS 1 synthetic aperture radar: SIZEX 1992. Journal of Geophysical Research, 104(C7), 15843–15857.CrossRefGoogle Scholar
  76. Schauer, U., Beszczynska-Möller, A., Walczowski, W., Fahrbach, E., Piechura, J., & Hansen, E. (2008). Variation of measured heat flow through the Fram Strait between 1997 and 2006. In Arctic-subarctic ocean fluxes (pp. 65–85). Dordrecht: Springer.CrossRefGoogle Scholar
  77. Schröder, D., Feltham, D. L., Flocco, D., & Tsamados, M. (2014). September Arctic Sea-ice minimum predicted by spring melt-pond fraction. Nature Climate Change, 4(5), 353.CrossRefGoogle Scholar
  78. Serreze, M. C., & Stroeve, J. (2015). Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A, 373(2045), 20140159.CrossRefGoogle Scholar
  79. Shuchman, R. A., Sutherland, L. L., & Johannessen, O. M. (1988). Geophysical information on the winter marginal ice zone obtained from SAR. In Proceedings of IGARSS’88 symposium, international geoscience and remote sensing symposium (pp. 1111–1114). Edinburgh, 1988. Remote Sensing: Moving Toward the 21st Century 2.Google Scholar
  80. Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., & Ozhigin, V. (2008). Volume and heat transports to the Arctic Ocean via the Norwegian and Barents seas. In Arctic–Subarctic Ocean Fluxes (pp. 45–64). Dordrecht: Springer.CrossRefGoogle Scholar
  81. Smith, D. C., IV, Morison, J. H., Johannessen, J. A., & Untersteiner, N. (1984). Topographic generation of an eddy at the edge of the, East Greenland Current. Journal of Geophysical Research, 89(C5), 8205–8208.CrossRefGoogle Scholar
  82. Smith, S. D., Banke, E. G., & Johannessen, O. M. (1970). Wind stress and turbulence over ice in the Gulf of St. Lawrence. Journal of Geophysical Research, 75(15), 2803–2812.  https://doi.org/10.1029/JC075i015p02803.CrossRefGoogle Scholar
  83. Smith, D. C., Lavelle, J. W., & Fernando, H. J. S. (2002). Arctic Ocean mixed-layer eddy generation under leads in sea ice. Journal of Geophysical Research: Oceans, 107(C8), 3103, 17-1–17-17.  https://doi.org/10.1029/2001JC000822.
  84. Svendsen, E., Kloster, K., Farrelly, B., Johannessen, O. M., Johannessen, J. A., Campbell, W. J., Gloersen, P., Cavalieri, D., & Mätzler, C. (1983). Norwegian remote sensing experiment: Evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research. Journal of Geophysical Research, 88(C5), 2781–2791.  https://doi.org/10.1029/JC088iC05p02781.CrossRefGoogle Scholar
  85. Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., & Azzolini, R. (2002). The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1), 133–166.Google Scholar
  86. Uttal, T., Curry, J. A., Mcphee, M. G., Perovich, D. K., Moritz, R. E., Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R., & Heiberg, A. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83(2), 255–275.CrossRefGoogle Scholar
  87. Vinje, T. E. (1977). Sea ice studies in the Spitzbergen-Greenland area, Landsat Rep. E77-10206, U.S. Dep. of Commer., Natl. Tech. Inf. Serv., Springfield, Va.Google Scholar
  88. Vinje, T. (2001). Fram Strait ice fluxes and atmospheric circulation: 1950–2000. Journal of Climate, 14, 3508–3517.CrossRefGoogle Scholar
  89. Wadhams, P., & Squire, V. A. (1983). An ice-water vortex at the edge of the East Greenland Current. Journal of Geophysical Research, 88(C5), 2770–2781.CrossRefGoogle Scholar
  90. Wadhams, P., Squire, V. A., Ewing, J. A., & Pascal, R. W. (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. Journal of Physical Oceanography, 6(2), 358–376.CrossRefGoogle Scholar
  91. Wadhams, P., Aulicino, G., Parmiggiani, F., Persson, O. G., & Holt, B. (2018). Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. Journal of Geophysical Research, 123(3), 2213.  https://doi.org/10.1002/2017JC013003.CrossRefGoogle Scholar
  92. Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., & Wu, B. (2009). Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophysical Research Letters, 36(5), L05706.CrossRefGoogle Scholar
  93. Westermann, S., Lüers, J., Langer, M., Piel, K., & Boike, J. (2009). The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway. The Cryosphere, 3(2), 245.CrossRefGoogle Scholar
  94. Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., & Bertino, L. (2013). Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Modelling, 71, 81–91.CrossRefGoogle Scholar
  95. Williams, T., Rampal, P., & Bouillon, S. (2017). Wave-ice interactions in the neXtSIM sea-ice model. The Cryosphere, 11(5), 2117.  https://doi.org/10.5194/tc-11-2117-2017.CrossRefGoogle Scholar
  96. Woodgate, R. A., Aagaard, K., & Weingartner, T. J. (2005). Monthly temperature, salinity, and transport variability of the Bering Strait throughflow. Geophysical Research Letters, 32(4), L04601.  https://doi.org/10.1029/2004GL021880.CrossRefGoogle Scholar
  97. Zhang, J., Lindsay, R., Schweiger, A., & Steele, M. (2013). The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophysical Research Letters, 40(4), 720–726.CrossRefGoogle Scholar
  98. Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., & Esau, I. (2012). A hierarchy of energy- and flux- budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorology, 146, 341–373.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ola M. Johannessen
    • 1
    Email author
  • Stein Sandven
    • 2
    • 3
  • Richard Davy
    • 2
  • Einar O. Olason
    • 2
  1. 1.Nansen Scientific SocietyBergenNorway
  2. 2.Nansen Environmental and Remote Sensing CenterBergenNorway
  3. 3.University Centre in SvalbardLongyearbyenNorway

Personalised recommendations