Advertisement

Extended Depth-of-Field Intraocular Lenses

  • Jorge L. Alió
  • Andrzej Grzybowski
  • Piotr Kanclerz
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Extended depth-of-focus (EDOF) optical profiles are a new optical design that is currently considered as an attractive alternative to accommodative and multifocal intraocular lenses (IOLs). Currently several optical principles might be utilized to indicate the physical mechanism of light bundling and are applied to EDOF IOLs—diffractive and/or refractive design, bioanalogic IOLs and small aperture design. Although EDOF IOLs allow relative spectacle independence, the explantation rate may be higher than for monofocal IOLs. The intolerance of total induced aberrations could significantly contribute to patient dissatisfaction after IOL implantation. The aim of this chapter is to discuss the currently available evidence on the use of induced ocular aberrations, particularly in extended depth-of-field lenses and their clinical application.

Keywords

Aberrations Extended depth-of-focus Extended depth-of-field Intraocular lenses Presbyopia 

Abbreviations

CA

Chromatic aberration

EDOF

Extended depth-of-focus

HOA

Higher-order aberration

IOL

Intraocular lens

LCA

Longitudinal chromatic aberration

LOA

Lower-order aberration

RMS

Root mean square

SA

Spherical aberration

Notes

Conflict of Interest

Dr Alio declares that he has no conflict of interest.

Dr Grzybowski declares that he has no conflict of interest.

Dr Kanclerz declares that he has no conflict of interest.

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

References

  1. 1.
    Howard IP. Image Formation and Accommodation. In: Howard IP, editor. Perceiving in Depth. Volume 1 Basic Mechanisms; 2012. p. 435–74.CrossRefGoogle Scholar
  2. 2.
    Bakaraju RC, Ehrmann K, Ho A. Extended depth of focus contact lenses vs. two commercial multifocals: part 1. Optical performance evaluation via computed through-focus retinal image quality metrics. J Optom. 2017;  https://doi.org/10.1016/j.optom.2017.04.003.PubMedCrossRefGoogle Scholar
  3. 3.
    MacRae S, Holladay JT, Glasser A, et al. Special Report: American Academy of Ophthalmology Task Force Consensus statement for extended depth of focus intraocular lenses. Ophthalmology. 2017;124(1):139–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Rocha KM. Extended depth of focus IOLs: the next chapter in refractive technology? J Refract Surg. 2017;33(3):146–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Plakitsi A, Neil Charman W. Comparison of the depths of focus with the naked eye and with three types of presbyopic contact lens correction. Cont Lens Anterior Eye. 1995;18(4):119–25.Google Scholar
  6. 6.
    Buckingham R, Lowther GE. Power distribution across a back surface, rigid multifocal contact lens. Int Contact Lens Clin. 1982;9(4):213–7.Google Scholar
  7. 7.
    Nakazawa M, Ohtsuki K. Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: optical analysis. Invest Ophthalmol Vis Sci. 1984;25(12):1458–60.PubMedGoogle Scholar
  8. 8.
    Nakazawa M, Ohtsuki K. Apparent accommodation in Pseudophakic eyes after implantation of posterior chamber intraocular lenses. Am J Ophthalmol. 1983;96(4):435–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Zentmayer W. Apparent accommodation in Aphakia. Am J Ophthalmol. 1918;1(8):570–1.CrossRefGoogle Scholar
  10. 10.
    Cheng H, Barnett JK, Vilupuru AS, et al. A population study on changes in wave aberrations with accommodation. J Vis. 2004;4(4):272–80.PubMedGoogle Scholar
  11. 11.
    Zhao H, Mainster MA. The effect of chromatic dispersion on pseudophakic optical performance. Br J Ophthalmol. 2007;91(9):1225–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhai Y, Wang Y, Wang Z, et al. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes. Biomed Mater Eng. 2014;24(6):3073–81.PubMedGoogle Scholar
  13. 13.
    Winter S, Fathi MT, Venkataraman AP, et al. Effect of induced transverse chromatic aberration on peripheral vision. J Opt Soc Am A Opt Image Sci Vis. 2015;32(10):1764–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Thibos LN, Bradley A, Still DL, Zhang X, Howarth PA. Theory and measurement of ocular chromatic aberration. Vision Res. 1990;30(1):33–49.PubMedCrossRefGoogle Scholar
  15. 15.
    Artal P, Marcos S, Iglesias I, Green DG. Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye. Vision Res. 1996;36(22):3575–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Ogboso YU, Bedell HE. Magnitude of lateral chromatic aberration across the retina of the human eye. J Opt Soc Am A. 1987;4(8):1666–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang S-N, Tai Y-C, Laukkanen H, Sheedy JE. Effects of ocular transverse chromatic aberration on peripheral word identification. Vision Res. 2011;51(21-22):2273–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Winter S, Sabesan R, Tiruveedhula P, et al. Transverse chromatic aberration across the visual field of the human eye. J Vis. 2016;16(14):9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sawides L, Marcos S, Ravikumar S, Thibos L, Bradley A, Webster M. Adaptation to astigmatic blur. J Vis. 2010;10(12):22.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sawides L, de Gracia P, Dorronsoro C, Webster M, Marcos S. Adapting to blur produced by ocular high-order aberrations. J Vis. 2011;11(7)  https://doi.org/10.1167/11.7.21.PubMedCrossRefGoogle Scholar
  21. 21.
    Gallego AA, Bará S, Jaroszewicz Z, Kolodziejczyk A. Visual Strehl performance of IOL designs with extended depth of focus. Optom Vis Sci. 2012;89(12):1702–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Kołodziejczyk A, Bará S, Jaroszewicz Z, Sypek M. The light sword optical element—a new diffraction structure with extended depth of focus. J Mod Opt. 1990;37(8):1283–6.CrossRefGoogle Scholar
  23. 23.
    Mira-Agudelo A, Torres-Sepúlveda W, Barrera JF, et al. Compensation of presbyopia with the light sword lens. Invest Ophthalmol Vis Sci. 2016;57(15):6870–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Ferrer-Blasco T, Montés-Micó R. In vitro optical quality comparison between the mini WELL ready progressive multifocal and the TECNIS Symfony. Graefes Arch Clin Exp Ophthalmol. 2016;254(7):1387–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Monsálvez-Romin D, Montés-Micó R. In vitro optical quality comparison of 2 trifocal intraocular lenses and 1 progressive multifocal intraocular lens. J Cataract Refract Surg. 2016;42(1):138–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang DH, Rocha KM. Intraocular lens optics and aberrations. Curr Opin Ophthalmol. 2016;27(4):298–303.PubMedCrossRefGoogle Scholar
  27. 27.
    Gatinel D, Loicq J. Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses. J Refract Surg. 2016;32(4):273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Monaco G, Gari M, Di Censo F, Poscia A, Ruggi G, Scialdone A. Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: trifocal versus extended range of vision. J Cataract Refract Surg. 2017;43(6):737–47.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Franchini A. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses. J Cataract Refract Surg. 2007;33(3):497–509.PubMedCrossRefGoogle Scholar
  30. 30.
    Song H, Yuan X, Tang X. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models. BMC Ophthalmol. 2016;16:9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lenkova GA. Chromatic aberrations of diffractive-refractive intraocular lenses in an eye model. Optoelectr Instrument Data Process. 2009;45(2):171–83.CrossRefGoogle Scholar
  32. 32.
    Vinas M, Dorronsoro C, Garzón N, Poyales F, Marcos S. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses. J Cataract Refract Surg. 2015;41(10):2115–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Weeber HA, Meijer ST, Piers PA. Extending the range of vision using diffractive intraocular lens technology. J Cataract Refract Surg. 2015;41(12):2746–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Ravikumar S, Bradley A, Thibos LN. Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses. J Cataract Refract Surg. 2014;40(7):1192–204.PubMedCrossRefGoogle Scholar
  35. 35.
    Millán MS, Vega F. Extended depth of focus intraocular lens: chromatic performance. Biomed Opt Express. 2017;8(9):4294–309.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Artal P, Manzanera S, Piers P, Weeber H. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Opt Express. 2010;18(2):1637–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Ohnuma K, Kayanuma H, Lawu T, Negishi K, Yamaguchi T, Noda T. Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations. Biomed Opt Express. 2011;2(6):1443–57.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Weeber HA, Piers PA. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. J Refract Surg. 2012;28(1):48–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang SY, Stem MS, Oren G, Shtein R, Lichter PR. Patient-centered and visual quality outcomes of premium cataract surgery: a systematic review. Eur J Ophthalmol. 2017;27(4):387–401.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilkins MR, Allan BD, Rubin GS, et al. Randomized trial of multifocal intraocular lenses versus monovision after bilateral cataract surgery. Ophthalmology. 2013;120(12):2449–2455.e1.CrossRefGoogle Scholar
  41. 41.
    Weeber HA, Hütz WW, Goes FJ, Piers PA. Influence of corneal aberrations on Dysphotopsia with multifocal IOLs. Investig Ophthalmol Vis Sci. 2011;52:6186.Google Scholar
  42. 42.
    Packer M, Chu YR, Waltz KL, et al. Evaluation of the aspheric tecnis multifocal intraocular lens: one-year results from the first cohort of the food and drug administration clinical trial. Am J Ophthalmol. 2010;149(4):577–584.e1.PubMedCrossRefGoogle Scholar
  43. 43.
    Fernandez EJ, Artal P. Achromatic doublet intraocular lens for full aberration correction. Biomed Opt Express. 2017;8(5):2396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Marcos S. Aberrations and visual performance following standard laser vision correction. J Refract Surg. 2001;17(5):S596–601.PubMedGoogle Scholar
  45. 45.
    Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg. 2018;34(4):228–35.  https://doi.org/10.3928/1081597x-20180125-01.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. J Refract Surg. 2018;34(8):507–14.CrossRefGoogle Scholar
  47. 47.
    Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M. A comparative study of the visual outcomes between a new trifocal and an extended depth of focus intraocular lens. Eur J Ophthalmol. 2018;28(2):182–7.PubMedCrossRefGoogle Scholar
  48. 48.
    TECNIS. Symfony® extended range of vision IOLs DFU. Santa Ana: Calif. Abbott Medical Optics Inc. http://www.tecnisiol.com/us/media/pdf/symfony/TECNIS-Symfony-DFU.pdf.
  49. 49.
    Weeber HA. Multi-ring lens, systems and methods for extended depth of focus. US Patent. 19 June 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jorge L. Alió
    • 1
  • Andrzej Grzybowski
    • 2
    • 3
  • Piotr Kanclerz
    • 4
  1. 1.Research & Development Department and Department of Cornea, Cataract, and Refractive SurgeryVISSUM Corporation and Miguel Hernández UniversityAlicanteSpain
  2. 2.Department of OphthalmologyUniversity of Warmia and MazuryOlsztynPoland
  3. 3.Institute for Research in Ophthalmology, Foundation for Ophthalmology DevelopmentPoznanPoland
  4. 4.Hygeia ClinicGdańskPoland

Personalised recommendations