Advertisement

Direct and Surrogate Likelihood-Free Statistical Inference for Epidemiological Models in a Network of Contacts

  • Rocío M. Ávila-Ayala
  • L. Leticia Ramírez-RamírezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1001)

Abstract

Modeling the dynamic of epidemic outbreaks in a network can help to describe not  only infectious events in a population but also other types of infectious agents, such as information and ideas. The pairwise contact network structure in the population is introduced to relax the mass action assumption, but the model increases its complexity and in most cases it is extremely expensive, or impossible, obtaining its likelihood function. In this work we propose the statistical inference of epidemic compartmental models based on the Approximate Bayesian Computation (ABC) and propose a surrogate version to reduce the required computer time. We illustrate this proposal with computational experiments of epidemic outbreaks in simulated networks.

Keywords

Modelling approach Evaluation Index System AHP 

References

  1. 1.
    Allen, L.J.: An introduction to stochastic epidemic models. In: Mathematical Epidemiology, pp. 81–130. Springer, Berlin (2008)Google Scholar
  2. 2.
    Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory, Ser. A 24(3), 296–307 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential monte carlo method for approximate bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dutta, R., Mira, A., Onnela, J.P.: Bayesian inference of spreading processes on networks. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2215), p. 20180,129 (2018)Google Scholar
  6. 6.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  7. 7.
    Gillespie JH (1976) A general model to account for enzyme variation in natural populations. ii. characterization of the fitness functions. Am. Nat. 110(975), 809–821Google Scholar
  8. 8.
    Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer, Berlin (2017)Google Scholar
  9. 9.
    Marin, J.M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain monte carlo without likelihoods. In: Proceedings of the National Academy of Sciences 100(26), pp. 15,324–15,328Google Scholar
  11. 11.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ramírez-Ramírez, L.L., Gel, Y.R., Thompson, M., de Villa, E., McPherson, M.: A new surveillance and spatio-temporal visualization tool SIMID: simulation of infectious diseases using random networks and GIS. Comput. Methods Programs Biomed. 110(3), 455–470 (2013)CrossRefGoogle Scholar
  13. 13.
    Wilkinson, R.D.: Approximate bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12(2), 129–141 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wormald, N.C.: Some problems in the enumeration of labelled graphs. Bull. Aust. Math. Soc. 21(1), 159–160 (1980).  https://doi.org/10.1017/S0004972700011436CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rocío M. Ávila-Ayala
    • 1
  • L. Leticia Ramírez-Ramírez
    • 2
    Email author
  1. 1.Univ. Nacional Autónoma de MéxicoFES Acatlán, Av. Alcanfores y San Juan Totoltepe s/n, Sta Cruz AcátlanNaucalpanMexico
  2. 2.Centro de Investigación en Matemáticas A.C. (CIMAT)GuanajuatoMexico

Personalised recommendations