Threats in the Internet of Things Pertaining to Digital Data

  • Qamar ul Arafeen
  • Asif Kamran
  • Najam ul Arifeen
  • Asad Ali Shaikh
  • Nadeem A Syed
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1001)


With the advent of Internet of Things (IoT) and the rapid advancements in this area, it is predicted that there will be over ten billions wireless accessories linked to the world of internet. Such devices will serve as the foundations in the field of computer science, impacting the everyday course of life. These wireless devices will be capable of absorbing a huge number of personal and sensitive information to enhance the results. The IoT technology puts the collective data to good use by integrating different data sets together that generates amazing outcomes. This technology, however, poses significant challenges to certain agencies aiming to apply this system in their routine businesses. This paper further highlights various threats and challenges that the IoT presents in digital forensics and assists in the identification of important areas which should be modified in future. Finally, the paper highlights the lack of digital forensic education in Pakistan.


Digital forensics Challenges IoT Education Evidence 


  1. 1.
    Abdmeziem, R., Tandjaoui, D.: Internet of things: Concept. building blocks, applications and challenges, 1–17 (2014)Google Scholar
  2. 2.
    Adams, R., Hobbs, V., Mann, G.: The advanced data acquisition model (Adam): A process model for digital forensic practice. J. Digit. Forensics 8(4), 25–48 (2013)Google Scholar
  3. 3.
    Arafeen, Q., Arifeen, N., Ahmed, M.: Digital forensics education in Pakistan -a new way to understand the digital world. Int. J. Latest Res. Eng. Technol. (IJLRET) 2(4), 72–74 (2016)Google Scholar
  4. 4.
    Atamli, A.W., Martin, A.: Threat-based security analysis for the internet of things. In: Workshop on Secure Internet of Things, pp. 35–43Google Scholar
  5. 5.
    Avizienis, A., Laprie, J., et al.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1(1), 1–23 (2004)CrossRefGoogle Scholar
  6. 6.
    Azhar, S., Hein, M., Sketo, B.: Building information modeling (bim): benefits, risks and challenges (2008).
  7. 7.
    Azmat, Z.: Country’s first digital forensic science center opens at KU. The News International (2016).
  8. 8.
    Bennett, D.: The challenges facing computer forensics investigators in obtaining information from mobile devices for use in criminal investigations. Inf. Secur. J.: Glob. Perspect. 21(3), 159–168 (2012)Google Scholar
  9. 9.
    Buskirk, V., Liu, V.: Digital evidence: Challenging the presumption of reliability. J. Digit. Forensic Pract. 1(1), 19–26 (2006)CrossRefGoogle Scholar
  10. 10.
    Chirgwin, R.: SPAM supposedly spotted leaving the fridge. The Register (2014). Retrieved from
  11. 11.
    Chen, B.: Computer-forensics-in-criminal-investigations (2013). Retrieved from
  12. 12.
    Cui, Q., Wang, Y. et al.: Big data analytics and network calculus enabling intelligent management of autonomous vehicles in a smart city. IEEE Internet Things J. 1 (2018)Google Scholar
  13. 13.
    Duranti, L., Endicott-Popovsky, B.: Digital records forensics: A new science and academic program for forensic readiness. J. Digit. Forensics, Secur. Law 5(2), 45–62 (2010)Google Scholar
  14. 14.
    Geers, K.: The cyber threat to national critical infrastructures: beyond theory. J. Digit. Forensic Pract. 3(2–4), 124–130 (2010)CrossRefGoogle Scholar
  15. 15.
    Gogolin, G., Jones, J.: Law enforcement’s ability to deal with digital crime and the implications for business. J. Digit. Forensic Pract. 3(2–4), 131–139 (2010)CrossRefGoogle Scholar
  16. 16.
    Garinkel, S.: Digital forensics research: The next 10 years. Digit. Investig. 7, 64–73 (2010)CrossRefGoogle Scholar
  17. 17.
    Gil, D., Ferrandez, A., et al.: Internet of things: A review of surveys based on context aware intelligent services. Sensors 16(7), 1069 (2016)CrossRefGoogle Scholar
  18. 18.
    Guo, H., Ren, J. et al.: A scalable and manageable IoT architecture based on transparent computing. J. Parallel Distrib. Comput. 111 (2017)Google Scholar
  19. 19.
    Haines, L.: Cops may check crash drivers’ mobile records ? The Register. The Register (2007).
  20. 20.
    Islam, S., Kwak, D., et al.: The internet of things for health care: A comprehensive survey. IEEE Access 3, 678–708 (2015)CrossRefGoogle Scholar
  21. 21.
    Iqbal, M., Olaleye, O., Bayoum, M.: A review on internet of things (IoT): Security and privacy requirements and the solution approaches. Glob. J. Comput. Sci. Technol.: E Netw., Web Secur. 16(7), 1–11 (2016)Google Scholar
  22. 22.
    Jazayeri, M., Liang, S., Huang, C.: Implementation and evaluation of four interoperable open standards for the internet of things. Sensors 15(9), 24343–24373 (2015)CrossRefGoogle Scholar
  23. 23.
    Lillis, D., Becker, B. et al.: Current challenges and future research areas for digital forensic investigation. In: The 11th ADFSL Conference on Digital Forensics Security and Law (CDFSL) (2016)Google Scholar
  24. 24.
    Li, C.: Emerging Digital Forensics Applications for Crime Detection, Prevention, and Security, 1st edn, pp. 123–125. Idea Group Inc., Pennsylvania (2013)CrossRefGoogle Scholar
  25. 25.
    McKemmish, R.: What is Forensic Computing? Trends and Issues in Crime and Criminal Justice, p. 118 (1999)Google Scholar
  26. 26.
    Miorandi, D., Sicari, S., et al.: Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRefGoogle Scholar
  27. 27.
    Mohay, G.: Technical challenges and directions for digital forensics. In: First International Workshop on Systematic Approaches to Digital Forensic Engineering, pp. 155– 161 (2005)Google Scholar
  28. 28.
    Mushtaque, K.: Digital forensic investigation models, an evolution study. J. Inf. Syst. Technol. Manag. 12(2), 233–243 (2015)Google Scholar
  29. 29.
    Naqvi, S., Dallons, G., Ponsard, C.: Applying digital forensics in the future internet enterprise systems. In: European SMEs’ Perspective, Fifth International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE) (2016)Google Scholar
  30. 30.
    Oriwoh, E., Jazani, D. et al.: Internet of Things Forensics: Challenges and approaches. In: 2013 9th International Conference on Collaborative Computing: Networking, Applications and Worksharing, vol. 2014, pp. 608–615 (2013)Google Scholar
  31. 31.
    Osborne, G., Slay, J.: Digital Forensics Infovis: An Implementation of a Process for Visualisation of Digital Evidence. In: Sixth International Conference on Availability, Reliability and Security (ARES), pp. 196–201. Vienna, Austria (2011)Google Scholar
  32. 32.
    Park, K., Park, J., et al.: Anti-forensic trace detection in digital forensic triage investigations. J. Digit. Forensics, Secur. Law 12(8), 31–40 (2017)Google Scholar
  33. 33.
    Pollitt, M., Nance, K., et al.: Virtualization and digital forensics: A research and education agenda. J. Digit. Forensic Pract. 2(2), 62–73 (2008)CrossRefGoogle Scholar
  34. 34.
    Rahman, S., Bishop, M., Holt, A.: Internet of Things Mobility Forensics. In: Proceedings of the 2016 Information Security Research and Education (INSuRE) Conference (INSuRECon-16) (2016)Google Scholar
  35. 35.
    Reith, M., Carr, C., Gunsch, G.: An Examination of digital forensic model. Int. Digit. Evid. 1(3), 1–12 (2002)Google Scholar
  36. 36.
    Rose, K., Eldridge, S., Chapin, L.: The Internet of Things: An overview. Proc. Internet Soc. (ISOC), 1–53 (2015)Google Scholar
  37. 37.
    Sethi, P., Sarangi, S.: Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 1–25 (2017)CrossRefGoogle Scholar
  38. 38.
    Information Models, N., Salim, F., et al.: Physical access control administration using building information models. Cyberspace Saf. Secur. 7672, 236–250 (2012)CrossRefGoogle Scholar
  39. 39.
    Shaikh, A.: Cyber-security-inside-pakistans-first-digital-forensic-research-lab (2016). Retrieved from Tribune:
  40. 40.
    Sharif, S.: Assessing Forensic Science Landscape in Pakistan. MIT Technology Review Pakistan (2017).
  41. 41.
    Slay, J., Lin, Y., et al.: Advances in Digital Forensics V: Chapter 3: Towards a Formalization of Digital Forensics, 5th edn, pp. 34–47. Springer, Florida (2009)Google Scholar
  42. 42.
    Srivastava, A., Vatsal, P.: Forensic importance of SIM cards as a digital evidence. J. Forensic Res. 07(322), 2 (2016)Google Scholar
  43. 43.
    Sun, H., Hsu, S., Chen, C.: Mobile jamming attack and its countermeasure in wireless sensor networks. In: AINAW ’07 Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops, pp. 457–462 (2007)Google Scholar
  44. 44.
    Taylor, M., Haggerty, J., et al.: Digital evidence in cloud computing systems. Comput. Law Secur. Rev. 26(3), 304–308 (2010)CrossRefGoogle Scholar
  45. 45.
    Tu, M., Xu, D., et al.: On the development of a digital forensics curriculum. J. Digit. Forensics, Secur. Law 7(3), 13–32 (2012)Google Scholar
  46. 46.
    Zawoad, S., Hasan, R.: FAIoT: Towards building a forensics aware eco system for the internet of things. In: IEEE International Conference on Services Computing. IEEE Computer Society (2015)Google Scholar
  47. 47.
    Zhang, J., Wang, L.: An integrated open forensic environment for digital evidence investigation. Wuhan Univ. J. Nat. Sci. 17(6), 511–515 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Qamar ul Arafeen
    • 1
  • Asif Kamran
    • 2
  • Najam ul Arifeen
    • 3
  • Asad Ali Shaikh
    • 1
  • Nadeem A Syed
    • 2
  1. 1.Faculty of Sciences and TechnologyILMA UniversityKarachiPakistan
  2. 2.Faculty of Management SciencesILMA UniversityKarachiPakistan
  3. 3.Lecturer, Department of CommerceFederal Urdu UniversityKarachiPakistan

Personalised recommendations