Advertisement

On Some Goodness-of-Fit Tests and Their Connection to Graphical Methods with Uncensored and Censored Data

  • Claudia Castro-Kuriss
  • Mauricio Huerta
  • Víctor Leiva
  • Alejandra Tapia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1001)

Abstract

In this work, we present goodness-of-fit tests related to the Kolmogorov-Smirnov and Michael statistics and connect them to graphical methods with uncensored and censored data. The Anderson-Darling test is often empirically more powerful than the Kolmogorov-Smirnov test. However, the former one cannot be related to graphical tools by means of probability plots, as the Kolmogorov-Smirnov test does. The Michael test is, in some cases, more powerful than the Anderson-Darling and Kolmogorov-Smirnov tests and can also be related to probability plots. We consider the Kolmogorov-Smirnov and Michael tests for detecting whether any distribution is suitable or not to model censored or uncensored data. We conduct numerical studies to show the performance of these tests and the corresponding graphical tools. Some comments related to big data and lifetime analysis, under the context of this study, are provided in the conclusions of this work.

Keywords

Anderson-Darling Kolmogorov-Smirnov and Michael tests Big data Censored data Test power 

Notes

Acknowledgements

The authors thank the editors and reviewers for their comments on this manuscript. This research work was partially supported by FONDECYT 1160868 grant from the Chilean government.

References

  1. 1.
    Athayde, E., Azevedo, C., Barros, M., Leiva, V.: Failure rate of Birnbaum-Saunders distributions: shape, change-point, estimation and robustness. Braz. J. Probab. Stat. 33, 301–328 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Azevedo, C., Leiva, V., Athayde, E., Balakrishnan, N.: Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation. Comput. Stat. Data Anal. 56, 3887–3897 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aykroyd, R.G., Leiva, V., Ruggeri, F.: Recent developments of control charts, identification of big data sources and future trends of current research. Technological Forecasting and Social Change (pages in press) (2019)Google Scholar
  4. 4.
    Balakrishnan, N., Ng, H., Kannan, N.: Goodness-of-fit tests based on spacings for progressively type-II censored data from a general location-scale distribution. IEEE Trans. Reliab. 53, 349–356 (2004)CrossRefGoogle Scholar
  5. 5.
    Barros, M., Leiva, V., Ospina, R., Tsuyuguchi, A.: Goodness-of-fit tests for the Birnbaum-Saunders distribution with censored reliability data. IEEE Trans. Reliab. 63, 543–554 (2014)CrossRefGoogle Scholar
  6. 6.
    Castillo, J., Puig, P.: Testing departures from gamma, Rayleigh, and truncated normal distributions. Ann. Inst. Stat. Math. 49, 255–269 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Castro-Kuriss, C.: On a goodness-of-fit test for censored data from a location-scale distribution with application. Chil. J. Stat. 37, 115–136 (2011)MathSciNetGoogle Scholar
  8. 8.
    Castro-Kuriss, C., Kelmansky, D., Leiva, V., Martinez, E.: A new goodness-of-fit test for censored data with an application in monitoring processes. Commun. Stat. Simul. Comput. 38, 1161–1177 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Castro-Kuriss, C., Kelmansky, D., Leiva, V., Martinez, E.: On a goodness-of-fit test for normality with unknown parameters and type-II censored data. J. Appl. Stat. 37, 1193–1211 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Castro-Kuriss, C., Leiva, V., Athayde, E.: Graphical tools to assess goodness-of-fit in non-location-scale distributions. Colomb. J. Stat. 37, 341–365 (2014)MathSciNetGoogle Scholar
  11. 11.
    Chen, G., Balakrishnan, N.: A general purpose approximate goodness-of-fit test. J. Qual. Technol. 27, 154–161 (1995)CrossRefGoogle Scholar
  12. 12.
    D’Agostino, C., Stephens, M.: Goodness of Fit Techniques. Marcel Dekker and Routledge, New York (2017)CrossRefGoogle Scholar
  13. 13.
    DePriest, D.: Using the singly truncated normal distribution to analyse satellite data. Commun. Stat. Theory Methods 12, 263–272 (1983)CrossRefGoogle Scholar
  14. 14.
    Leiva, V.: The Birnbaum-Saunders distribution. Academic Press, New York (2016)zbMATHGoogle Scholar
  15. 15.
    Meeker, W.Q., Escobar, L.A.: Statistical Methods for Reliability Data. Wiley, New York (1998)zbMATHGoogle Scholar
  16. 16.
    Feuerverger, A.: On goodness of fit for operational risk. Int. Stat. Rev. 84, 434–455 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Goldmann, C., Klar, B., Meintanis, S.G.: Data transformations and goodness-of-fit tests for type-II right censored samples. Metrika 78, 59–83 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lawless, J.: Statistical Models and Methods for Lifetime Data. Wiley, New York (2003)zbMATHGoogle Scholar
  19. 19.
    Leiva, V., Ponce, M., Marchant, C., Bustos, O.: Fatigue statistical distributions useful for modeling diameter and mortality of trees. Colomb. J. Stat. 35, 349–367 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Leiva, V., Rojas, E., Galea, M., Sanhueza, A.: Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data. Appl. Stoch. Model. Bus. Ind. 30, 115–131 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin, C., Huang, Y., Balakrishnan, N.: A new method for goodness-of-fit testing based on type-II right censored samples. IEEE Trans. Reliab. 57, 633–642 (2008)CrossRefGoogle Scholar
  22. 22.
    Meatless, M., Rousseeuw, P.J., Croux, C., et al.: robustbase: Basic Robust Statistics. R package version 0.93-3 (2018). http://robustbase.r-forge.r-project.org
  23. 23.
    Marden, J.: Positions and QQ-plots. Stat. Sci. 19, 606–614 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Michael, J.: The stabilized probability plot. Biometrika 70, 11–17 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pakyari, R., Balakrishnan, N.: A general purpose approximate goodness-of-fit test for progressively type-II censored data. IEEE Trans. Reliab. 61, 238–244 (2012)CrossRefGoogle Scholar
  26. 26.
    Rad, A., Yousefzadeh, F., Balakrishnan, N.: Goodness-of-fit test based on Kullback-Leibler information for progressively type-II censored data. IEEE Trans. Reliab. 60, 570–579 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claudia Castro-Kuriss
    • 1
  • Mauricio Huerta
    • 3
  • Víctor Leiva
    • 3
  • Alejandra Tapia
    • 2
  1. 1.Instituto Tecnológico de Buenos AiresBuenos AiresArgentina
  2. 2.Faculty of Basic SciencesUniversidad Católica del MauleTalcaChile
  3. 3.School of Industrial EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations