Advertisement

Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows

  • Andreas LintermannEmail author
Chapter

Abstract

Computational fluid dynamics methods enable to numerically predict complex flows with the help of computers. In the fields of Engineering and Physics they are already in use for decades to support design decissions and to get insight into complex physical phenomena. The simulation techniques have massively evolved over the past years and can nowadays be applied in medical context to analyze bio-fluidmechanical processes. Thanks to the continuous increase of computational power and parallelism as well as algorithmic advancements, accurate predictions of the flow in the nasal cavity are possible today. This chapter introduces the reader to the concepts of the computational fluid dynamics of the nose. It delivers some fundamentals on pre-processing medical image data, various techniques to generate computational meshes and gives an overview of methods to solve the governing equations of fluid motion. Thereby, advantages and disadvantages of the various approaches are explained. Subsequently, a variety of methods to analyze the flow and particle dynamics in the nasal cavity, ranging from streamline visualizations, pressure loss and temperature increase considerations, wall-shear stress and heat-flux distributions, to the analysis of the particle deposition behavior and transitional flow, is presented. The chapter concludes with how such methods can be used in clinical applications and elaborates how future developments might support decision making in medical pathways.

Keywords

Computational fluid dynamics Nasal cavity Bio-fluid mechanics Pressure Temperature Velocity Density 

References

  1. 1.
    Naftali S, Schroter RC, Shiner RJ, Elad D. Transport phenomena in the human nasal cavity: a computational model. Ann Biomed Eng. 1998;26(5):831–9.CrossRefGoogle Scholar
  2. 2.
    Hörschler I, Meinke M, Schröder W. Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids. 2003;32(1):39–45.  https://doi.org/10.1016/S0045-7930(01)00097-4.CrossRefGoogle Scholar
  3. 3.
    Naftali S, Rosenfeld M, Wolf M, Elad D. The air-conditioning capacity of the human nose. Ann Biomed Eng. 2005;33(4):545–53.  https://doi.org/10.1007/s10439-005-2513-4.CrossRefGoogle Scholar
  4. 4.
    Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol. 2006;100(3):1003–10.  https://doi.org/10.1152/japplphysiol.01049.2005.CrossRefGoogle Scholar
  5. 5.
    Hörschler I, Schröder W, Meinke M. On the assumption of steadiness of nasal cavity flow. J Biomech. 2010;43(6):1081–5.  https://doi.org/10.1016/j.jbiomech.2009.12.008.CrossRefGoogle Scholar
  6. 6.
    Shi H, Kleinstreuer C, Zhang Z. Dilute suspension flow with nanoparticle deposition in a representative nasal airway model. Phys Fluids. 2008;20(1):013301.  https://doi.org/10.1063/1.2833468.CrossRefGoogle Scholar
  7. 7.
    Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege HC. Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph. 2009;15(6):1407–14.  https://doi.org/10.1109/TVCG.2009.198.CrossRefGoogle Scholar
  8. 8.
    Gambaruto A, Taylor D, Doorly D. Modelling nasal airflow using a Fourier descriptor representation of geometry. Int J Numer Methods Fluids. 2009;59(11):1259–83.  https://doi.org/10.1002/fld.1866.CrossRefGoogle Scholar
  9. 9.
    Riazuddin VN, Zubair M, Shuaib IL, Abdullah MZ, Hamid SA, Ahmad KA. Numerical study of inspiratory and expiratory flow in a human nasal cavity. J Med Biol Eng. 2010;31(3):201–6.  https://doi.org/10.5405/jmbe.781.
  10. 10.
    Lintermann A, Meinke M, Schröder W. Investigations of nasal cavity flows based on a lattice- Boltzmann method, in: Resch M, Wang X, Bez W, Focht E, Kobayashi H, Roller S (Eds.), High performance computing on vector systems 2011, Springer Berlin, 2012, pp. 143–158. doi: https://doi.org/10.1007/978-3-642-22244-3.CrossRefGoogle Scholar
  11. 11.
    Lintermann A, Meinke M, Schröder W. Investigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), Brussels, Belgium, 2011.Google Scholar
  12. 12.
    Gambaruto AM, Taylor DJ, Doorly DJ. Decomposition and description of the nasal cavity form. Ann Biomed Eng. 2012;40(5):1142–59.  https://doi.org/10.1007/s10439-011-0485-0.CrossRefGoogle Scholar
  13. 13.
    Achilles N, Pasch N, Lintermann A, Schröder W, Mösges R. Computational fluid dynamics: a suitable assessment tool for demonstrating the antiobstructive effect of drugs in the therapy of allergic rhinitis. ActaotorhinolaryngologicaItalica: organoufficialedellaSociet’aitaliana di otorinolaringologia e chirurgiacervico-facciale. 2013;33(1):36–42.Google Scholar
  14. 14.
    Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech. 2013;46(2):299–306.  https://doi.org/10.1016/j.jbiomech.2012.11.022.CrossRefGoogle Scholar
  15. 15.
    Lintermann A, Meinke M, Schröder W. Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med. 2013;43(11):1833–52.  https://doi.org/10.1016/j.compbiomed.2013.09.003.CrossRefGoogle Scholar
  16. 16.
    Bates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, et al. Dynamics of airflow in a short inhalation. J R Soc Interface. 2014;12(102):20140880.  https://doi.org/10.1098/rsif.2014.0880.CrossRefGoogle Scholar
  17. 17.
    Shang Y, Inthavong K, Tu J. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids. 2015;114:141–50.  https://doi.org/10.1016/j.compfluid.2015.02.020.CrossRefGoogle Scholar
  18. 18.
    Henn T, Thäter G, Dörfler W, Nirschl H, Krause MJ. Parallel dilute particulate flow simulations in the human nasal cavity. Comput Fluids. 2016;124:197–207.  https://doi.org/10.1016/j.compfluid.2015.08.002.CrossRefGoogle Scholar
  19. 19.
    Calmet H, Gambaruto A, AM BAJ, Vázquez M, Houzeaux G, Doorly DJ. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med. 2016;69:166–80.  https://doi.org/10.1016/j.compbiomed.2015.12.003.CrossRefGoogle Scholar
  20. 20.
    Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First steps to develop and validate a CFPD model in order to support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res. 33:1337.  https://doi.org/10.1007/s11095-016-1875-7.CrossRefGoogle Scholar
  21. 21.
    Eitel G, Freitas RK, Lintermann A, Meinke M, Schröder W. Numerical simulation of nasal cavity flow based on a lattice-Boltzmann method. In: Dillmann A, Heller G, Klaas M, Kreplin HP, Nitsche W, Schröder W, editors. New results in numerical and experimental fluid mechanics VII, 112 of notes on numerical fluid mechanics and multidisciplinary design. Berlin: Springer; 2010. p. 513–20.CrossRefGoogle Scholar
  22. 22.
    Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics. 1987;21(4):163–9.CrossRefGoogle Scholar
  23. 23.
    Taubin G, Zhang T, Golub G. Optimal surface smoothing as filter design. Computer Vision ECCV. 1996;96:283–92.Google Scholar
  24. 24.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet F-RJJC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.  https://doi.org/10.1016/j.mri.2012.05.001.CrossRefGoogle Scholar
  25. 25.
    Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 2013;8(4):607–20.  https://doi.org/10.1007/s11548-013-0840-8.CrossRefGoogle Scholar
  26. 26.
    Rosset A, Spadola L, Ratib O. Osiri X. an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16.  https://doi.org/10.1007/s10278-004-1014-6.CrossRefGoogle Scholar
  27. 27.
    Lintermann A, Schlimpert S, Grimmen J, Günther C, Meinke M, Schröder W. Massively parallel grid generation on HPC systems. Comput Methods Appl Mech Eng. 2014;277:131–53.  https://doi.org/10.1016/j.cma.2014.04.009.CrossRefGoogle Scholar
  28. 28.
    Chien KY. Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 1982;20(1):33–8.  https://doi.org/10.2514/3.51043.CrossRefGoogle Scholar
  29. 29.
    Wilcox DC. Formulation of the k-omega turbulence model revisited, in: 45th AIAA aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2007. doi:10.2514/6.2007-1408.Google Scholar
  30. 30.
    Anderson JDJ. Computational fluid dynamics. Singapore: MacGraw-Hill; 1995.Google Scholar
  31. 31.
    Succi S. The lattice Boltzmann equation: theory and applications, vol. 222. Rome: Oxford University Press; 2001.Google Scholar
  32. 32.
    Kopriva DA. Implementing spectral methods for partial differential equations, scientific computation. Dordrecht: Springer.  https://doi.org/10.1007/978-90-481-2261-5.CrossRefGoogle Scholar
  33. 33.
    Bernoulli D. Hydrodynamica, sive de viribus et motibusfluidorumcommentarii: opus academicumabauctore, dumPetropoliageret, congestum, 1738. doi: https://doi.org/10.3931/e-rara-3911.
  34. 34.
    Finck M, Hänel D, Wlokas I. Simulation of nasal flow by lattice Boltzmann methods. Comput Biol Med. 2007;37(6):739–49.  https://doi.org/10.1016/j.compbiomed.2006.06.013.CrossRefGoogle Scholar
  35. 35.
    Hörschler I, Schröder W, Meinke M. Comparison of steady and unsteady nasal cavity flow solutions for the complete respiration cycle. Comput Fluid Dyn J. 2006;15(3):354–77.Google Scholar
  36. 36.
    Vogt K, Hoffrichter H. Neueströmungs physikalische Erkenntnisse in der Rhinomanometrie und ihrepraktischenKonsequenzen. In: Mösges S, editor. TopischeTherapie der allergischen Rhinitis. Germany: Biermann; 1993. p. 45–60.Google Scholar
  37. 37.
    Haller G. An objective definition of a vortex. J Fluid Mech. 2005;525:1–26.  https://doi.org/10.1017/S0022112004002526.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Chair of Fluid Mechanics, RWTH Aachen UniversityAachenGermany
  2. 2.Simulation Laboratory Highly Scalable Fluids and Solids Engineering, Jülich Aachen Research Alliance Center for Simulation and Data Science (JARA-CSD), RWTH Aachen UniversityAachenGermany

Personalised recommendations