Advertisement

Robotic Surgery of Skull Base

  • Alperen Vural
  • Hesham Negm
  • Claudio Vicini
Chapter

Abstract

Czech novelist Karel Čapek introduced the word “robot” to the English language in his science fiction play Rossum’s Universal Robots (Rossumovi Univerzální Roboti) in 1920. Robotic systems in the field of medicine are remote performers that operate via the master-slave style. The only Food and Drug Administration (FDA)-approved surgical robotic system, the Da Vinci® (Intuitive Surgical International, CA), is designed to imitate the surgeons’ hand movements. The system consists of three major parts: the surgical console, the patient-side cart, and the vision cart. The surgical console is the remote part in which the surgeon operates seated by grasping the handpieces while viewing 3D images. The patient-side cart has three or four arms on which EndoWrist® instruments were installed that enable 7 degrees of motion performing surgeons’ hand commands. An endoscope is attached on one of these arms. The vision cart is equipped with a high-definition 3D endoscope and image-processing equipment. Although lagged behind the other surgical specialties, the use of robotics in otorhinolaryngology-head and neck surgery has recently gained a significant popularity. Studies by Hockstein, O’Malley, and Weinstein et al. revealed the usefulness of robotic surgery in the oropharynx, hypopharynx, and larynx. They pioneered the emergence of transoral robotic surgery (TORS), and after these leading studies, an FDA approval for TORS was gained for the benign diseases and T1 and T2 malignancies of head and neck in 2009. Recently, robot-assisted surgery is being intensively investigated and performed in all fields of otorhinolaryngology from thyroidectomy to cochlear implant insertion and from obstructive sleep apnea to skull base surgery and to other subspecialties.

Keywords

Robotic surgery Skull base Da Vinci® Surgical console The patient-side cart The vision cart 

References

  1. 1.
    Borumandi F, Heliotis M, Kerawala C, Bisase B, Cascarini L. Role of robotic surgery in oral and maxillofacial, and head and neck surgery. Br J Oral Maxillofac Surg. 2012;50(5):389–93.CrossRefGoogle Scholar
  2. 2.
    Spinoglio G, Marano A, Priora F, Melandro F, Formisano G. History of robotic surgery. In: Robotic surgery. Italy: Springer; 2015. p. 1–12.CrossRefGoogle Scholar
  3. 3.
    Sorrel NC, Kupferman M, Hanna EY, Holsinger CF. Robotics in endoscopic skull base surgery. In: Devaiah AK, Marple BF, editors. Rhinology and endoscopic skull base surgery. Stuttgart: Georg Thieme Verlag; 2013. p. 253–9.Google Scholar
  4. 4.
    Davies BL, Hibberd RD, Coptcoat MJ, Wickham JEA. A surgeon robot prostatectomy—a laboratory evaluation. J Med Eng Technol. 1989;13(6):273–7.CrossRefGoogle Scholar
  5. 5.
    Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12(8):1091.CrossRefGoogle Scholar
  6. 6.
    Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.CrossRefGoogle Scholar
  7. 7.
    Maan ZN, Gibbins N, Al-Jabri T, D'Souza AR. The use of robotics in otolaryngology–head and neck surgery: a systematic review. Am J Otolaryngol. 2012;33(1):137–46.CrossRefGoogle Scholar
  8. 8.
    Brett PN, Baker DA, Reyes L, Blanshard J. An automatic technique for micro-drilling a stapedotomy in the flexible stapes footplate. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1995;209(4):255–62.CrossRefGoogle Scholar
  9. 9.
    Haus BM, Kambham N, Le D, Moll FM, Gourin C, Terris DJ. Surgical robotic applications in otolaryngology. Laryngoscope. 2003;113(7):1139–44.CrossRefGoogle Scholar
  10. 10.
    Hockstein NG, Paul Nolan J, O'Malley BW, Joseph Woo Y. Robot-Assisted Pharyngeal and Laryngeal Microsurgery: Results of Robotic Cadaver Dissections. Laryngoscope. 2005;115(6):1003–8.CrossRefGoogle Scholar
  11. 11.
    Hockstein NG, Paul Nolan J, O'Malley BW, Joseph Woo Y. Robotic microlaryngeal surgery: a technical feasibility study using the da Vinci surgical robot and an airway mannequin. Laryngoscope. 2005;115(5):780–5.CrossRefGoogle Scholar
  12. 12.
    Weinstein GS, O'Malley BW, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope. 2005;115(7):1315–9.CrossRefGoogle Scholar
  13. 13.
    Hockstein NG, Weinstein GS. Maintenance of hemostasis in transoral robotic surgery. ORL. 2005;67(4):220–4.CrossRefGoogle Scholar
  14. 14.
    Yarlagadda BB, Russell MS, Grillone GA. History and overview of robotic surgery in otolaryngology—head and neck surgery. In: Robotic surgery of the head and neck: Springer; 2015. p. 1–11.Google Scholar
  15. 15.
    Majdani O, Rau TS, Baron S, Eilers H, Baier C, Heimann B, Ortmaier T, Bartling S, Lenarz T, Leinung M. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg. 2009;4(5):475–86.CrossRefGoogle Scholar
  16. 16.
    Nathan C, Chakradeo V, Malhotra K, D'Agostino H, Patwardhan R. The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base. 2006;16(3):123.CrossRefGoogle Scholar
  17. 17.
    Vicini C, Montevecchi F, Pang K, Bahgat A, Dallan I, Frassineti S, Campanini A. Combined transoral robotic tongue base surgery and palate surgery in obstructive sleep apnea-hypopnea syndrome: Expansion sphincter pharyngoplasty versus uvulopalatopharyngoplasty. Head Neck. 2014;36(1):77–83.CrossRefGoogle Scholar
  18. 18.
    Tanna N, Joshi AS, Glade RS, Zalkind D, Sadeghi N. Da Vinci robot–assisted endocrine surgery: Novel applications in otolaryngology. Otolaryngol Head Neck Surg. 2006;135(4):633–5.CrossRefGoogle Scholar
  19. 19.
    Ozer E, Durmus K, Carrau RL, Lara D, Filho LFSD, Prevedello DM, Otto BA, Old MO. Applications of transoral, transcervical, transnasal, and transpalatal corridors for Robotic surgery of the skull base. Laryngoscope. 2013;123(9):2176–9.CrossRefGoogle Scholar
  20. 20.
    Haruna S, Otori N, Moriyama H, Kamio M. Endoscopic transnasal transethmosphenoidal approach for pituitary tumors: assessment of technique and postoperative findings of nasal and paranasal cavities. Auris Nasus Larynx. 2007;34(1):57–63.CrossRefGoogle Scholar
  21. 21.
    Anand VK, Schwartz TH, Hiltzik DH, Kacker A. Endoscopic transsphenoidal pituitary surgery with real-time intraoperative magnetic resonance imaging. Am J Rhinol. 2006;20(4):401–5.CrossRefGoogle Scholar
  22. 22.
    Frank G, Pasquini E, Doglietto F, Mazzatenta D, Sciarretta V, Farneti G, Calbucci F. The endoscopic extended transsphenoidal approach for craniopharyngiomas. Neurosurgery. 2006;59(1):ONS–75-ONS-83.Google Scholar
  23. 23.
    Sethi DS, Leong J-L. Endoscopic pituitary surgery. Otolaryngol Clin North Am. 2006;39(3):563–83.CrossRefGoogle Scholar
  24. 24.
    Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus. 2005;19(1):1–12.Google Scholar
  25. 25.
    Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus. 2005;19(1):1–7.Google Scholar
  26. 26.
    Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R. Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus. 2005;19(1):1–10.Google Scholar
  27. 27.
    Solari D, Magro F, Cappabianca P, Cavallo LM, Samii A, Esposito F, Paternò V, De Divitiis E, Samii M. Anatomical study of the pterygopalatine fossa using an endoscopic endonasal approach: spatial relations and distances between surgical landmarks. J Neurosurg. 2007;106(1):157–63.CrossRefGoogle Scholar
  28. 28.
    Castelnuovo P, Dallan I, Battaglia P, Bignami M. Endoscopic endonasal skull base surgery: past, present and future. Eur Arch Otorhinolaryngol. 2010;267(5):649–63.CrossRefGoogle Scholar
  29. 29.
    Batra PS, Citardi MJ, Worley S, Lee J, Lanza DC. Resection of anterior skull base tumors: comparison of combined traditional and endoscopic techniques. Am J Rhinol. 2005;19(5):521–8.CrossRefGoogle Scholar
  30. 30.
    Lee SC, Senior BA. Endoscopic skull base surgery. Clin Exp Otorhinolaryngol. 2008;1(2):53–62.  https://doi.org/10.3342/ceo.2008.1.2.53.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hanna EY, Holsinger C, DeMonte F, Kupferman M. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg. 2007;133(12):1209–14. doi:133/12/1209 [pii].  https://doi.org/10.1001/archotol.133.12.1209.CrossRefGoogle Scholar
  32. 32.
    Bolzoni Villaret A, Doglietto F, Carobbio A, Schreiber A, Panni C, Piantoni E, et al. Robotic transnasal endoscopic skull base surgery: systematic review of the literature and report of a novel prototype for a hybrid system (Brescia Endoscope Assistant Robotic Holder). World Neurosurg. 2017;105:875–83.CrossRefGoogle Scholar
  33. 33.
    Kim KH, Choi HG, Jung YH. Head and neck robotic surgery: pros and cons. Head Neck Oncol. 2013;5(3):26.Google Scholar
  34. 34.
    Blanco RG, Boahene K. Robotic-assisted skull base surgery: preclinical study. J Laparoendosc Adv Surg Tech A. 2013;23(9):776–82.  https://doi.org/10.1089/lap.2012.0573.CrossRefPubMedGoogle Scholar
  35. 35.
    Schneider JS, Burgner J, Webster RJ 3rd, Russell PT 3rd. Robotic surgery for the sinuses and skull base: what are the possibilities and what are the obstacles? Curr Opin Otolaryngol Head Neck Surg. 2013;21(1):11–6.  https://doi.org/10.1097/MOO.0b013e32835bc65000020840-201302000-00004. [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Arora A, Cunningham A, Chawdhary G, Vicini C, Weinstein GS, Darzi A, Tolley N. Clinical applications of Telerobotic ENT-Head and Neck surgery. Int J Surg. 2011;9(4):277–84.  https://doi.org/10.1016/j.ijsu.2011.01.008S1743-9191(11)00009-4 [pii].CrossRefPubMedGoogle Scholar
  37. 37.
    Meccariello G, Faedi F, AlGhamdi S, Montevecchi F, Firinu E, Zanotti C, Cavaliere D, et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg. 2016;10(1):57–61.  https://doi.org/10.1007/s11701-015-0541-010. 1007/s11701-015-0541-0 [pii].CrossRefPubMedGoogle Scholar
  38. 38.
    Kupferman ME, Hanna E. Robotic surgery of the skull base. Otolaryngol Clin North Am. 2014;47(3):415–23.  https://doi.org/10.1016/j.otc.2014.02.004S0030-6665. (14)00017-6 [pii].CrossRefPubMedGoogle Scholar
  39. 39.
    Matinfar M, Baird C, Batouli A, Clatterbuck R, Kazanzides P. Robot-assisted skull base surgery. In: Intelligent robots and systems, 2007. IROS 2007. IEEE/RSJ International conference on: IEEE; 2007.Google Scholar
  40. 40.
    Cappabianca P, Cavallo LM, de Divitiis O, Solari D, Esposito F, Colao A. Endoscopic pituitary surgery. Pituitary. 2008;11(4):385–90.CrossRefGoogle Scholar
  41. 41.
    Brook C, Grillone GA. Experimental approaches and future applications of robotic surgery in the head and neck. In: Robotic surgery of the head and neck: Springer; 2015. p. 147–53.Google Scholar
  42. 42.
    Nimsky C, Rachinger J, Iro H, Fahlbusch R. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Minim Invasive Neurosurg. 2004;47(1):41–6.  https://doi.org/10.1055/s-2003-812465.CrossRefPubMedGoogle Scholar
  43. 43.
    Steinhart H, Bumm K, Wurm J, Vogele M, Iro H. Surgical application of a new robotic system for paranasal sinus surgery. Ann Otol Rhinol Laryngol. 2004;113(4):303–9.CrossRefGoogle Scholar
  44. 44.
    Bumm K, Wurm J, Rachinger J, Dannenmann T, Bohr C, Fahlbusch R, Iro H, Nimsky C. An automated robotic approach with redundant navigation for minimal invasive extended transsphenoidal skull base surgery. Minim Invasive Neurosurg. 2005;48(3):159–64.  https://doi.org/10.1055/s-2005-870903.CrossRefPubMedGoogle Scholar
  45. 45.
    Kupferman M, DeMonte F, Holsinger FC, Hanna E. Transantral robotic access to the pituitary gland. Otolaryngol Head Neck Surg. 2009;141(3):413–5.CrossRefGoogle Scholar
  46. 46.
    O'Malley BW Jr, Weinstein GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys. 2007;69(2 Suppl):S125–8. doi:S0360-3016(07)01035-8 [pii].  https://doi.org/10.1016/j.ijrobp.2007.06.028.CrossRefPubMedGoogle Scholar
  47. 47.
    Chauvet D, Missistrano A, Hivelin M, Carpentier A, Cornu P, Hans S. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study. Neurosurg Rev. 2014;37(4):609–17.  https://doi.org/10.1007/s10143-014-0553-7.CrossRefGoogle Scholar
  48. 48.
    O'Malley BW Jr, Weinstein GS. Robotic skull base surgery: preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg. 2007;133(12):1215–9.  https://doi.org/10.1001/archotol.133.12.1215.CrossRefPubMedGoogle Scholar
  49. 49.
    McCool RR, Warren FM, Wiggins RH, Hunt JP. Robotic surgery of the infratemporal fossa utilizing novel suprahyoid port. Laryngoscope. 2010;120(9):1738–43.CrossRefGoogle Scholar
  50. 50.
    Kim GG, Zanation AM. Transoral robotic surgery to resect skull base tumors via transpalatal and lateral pharyngeal approaches. Laryngoscope. 2012;122(7):1575–8.  https://doi.org/10.1002/lary.23354.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Arshad H, Durmus K, Ozer E. Transoral robotic resection of selected parapharyngeal space tumors. Eur Arch Otorhinolaryngol. 2013;270(5):1737–40.CrossRefGoogle Scholar
  52. 52.
    Ozer E, Waltonen J. Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope. 2008;118(9):1613–6.CrossRefGoogle Scholar
  53. 53.
    Dallan I, Castelnuovo P, Montevecchi F, Battaglia P, Cerchiai N, Seccia V, Vicini C. Combined transoral transnasal robotic-assisted nasopharyngectomy: a cadaveric feasibility study. Eur Arch Otorhinolaryngol. 2012;269(1):235–9.CrossRefGoogle Scholar
  54. 54.
    Lee JYK, O'Malley BW Jr, Newman JG, Weinstein GS, Lega B, Diaz J, Sean Grady M. Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study: laboratory investigation. J Neurosurg Spine. 2010;12(1):13–8.CrossRefGoogle Scholar
  55. 55.
    Wei WI, Ho W-K. Transoral robotic resection of recurrent nasopharyngeal carcinoma. Laryngoscope. 2010;120(10):2011–4.CrossRefGoogle Scholar
  56. 56.
    Carrau RL, Prevedello DM, de Lara D, Durmus K, Ozer E. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck. 35(11):E351–8.  https://doi.org/10.1002/hed.23238.CrossRefGoogle Scholar
  57. 57.
    Fernandez-Nogueras FJ, Katati MJ, Arraez Sanchez MA, Molina Martinez M, Sanchez Carrion M. Transoral robotic surgery of the central skull base: preclinical investigations. Eur Arch Otorhinolaryngol 2013. 2014;271(6):1759–63.  https://doi.org/10.1007/s00405-013-2717-4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alperen Vural
    • 1
  • Hesham Negm
    • 2
  • Claudio Vicini
    • 3
  1. 1.Department of OtorhinolaryngologyErciyes UniversityKayseriTurkey
  2. 2.Department of Otolaryngology Head and Neck SurgeryCairo UniversityCairoEgypt
  3. 3.Department of Head-Neck Surgery, OtolaryngologyMorgagni Pierantoni Hospital, Head-Neck and Oral Surgery UnitForlìItaly

Personalised recommendations