Advertisement

Robot-Assisted Surgery Around the Nose

  • Ayse Pelin Gör Yiğider
  • Fatma Tülin Kayhan
Chapter

Abstract

Owing to improvements in endonasal endoscopic approaches and technologies, as well as in computerized tomography, these regions have now been fully exposed and mastered. Establishing the correct pathophysiology is important for diagnosis and treatment. Technological improvements have allowed for the development of more effective, easier-to-apply, and less invasive surgical modalities. For example, improvements in endonasal endoscopy have allowed us to understand the physiopathology of inflammatory conditions, such as rhinosinusitis, and have precipitated a change in approach to such diseases, finally resulting in the development of functional endoscopic sinus surgery. Recently, advanced endoscopic surgical techniques have emerged for orbital and cerebrospinal fluid (CSF) fistula repair. Endoscopic navigation is also considered to be a highly facilitative technology. Both malignant and benign lesions in the sinonasal region have been treated successfully using newly developed instruments. Recently, the skull base, infratemporal fossa, and petrous apex have all been managed endoscopically. In terms of the advantages of surgical robots with respect to overcoming the limitations of endoscopic endonasal surgery, the Da Vinci system provides a high-definition 3D view with ×16 magnification. Transorally, or through very small skin incisions, minimally invasive surgery can be performed. Tremor-filtering robotic instruments, while mimicking hand wrist motion, have the capacity for 540° movement in seven planes. During robotic surgery, the console surgeon can control the instruments with both hands, and the patient cart can be used for aspiration and to manipulate retractors to achieve exposure. Additionally, sutures can be applied with two hands and surgical instruments can be left in the surgical field. These advantages allow for safer, easier, and more ergonomic surgery.

Keywords

Robot assisted Surgery Nose Robotic surgery Da Vinci system 

References

  1. 1.
    Strauss G, Hofer M, Kehrt S, Grunert R, Korb W, Trantakis C, Winkler D, Meixensberger J, Bootz F, Dietz A, Wahrburg J. Manipulator assisted endoscope guidance in functional endoscopic sinus surgery: proof of concept. HNO. 2007;55(3):177–84.CrossRefGoogle Scholar
  2. 2.
    Hanna EY, Holsinger C, DeMonte F, Kupferman M. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg. 2007;133(12):1209–14.CrossRefGoogle Scholar
  3. 3.
    Ishii Y, Tahara S, Teramoto A, Morıta A. Endoscopic endonasal skull base surgery: advantages, limitations, and our techniques to overcome cerebrospinal fluid leakage: technical note. Neurol Med Chir. 2014;54(12):983–90.  https://doi.org/10.2176/nmc.st.2014-0081.CrossRefGoogle Scholar
  4. 4.
    Shin M, Kondo K, Saito N. Current status of endoscopic endonasal surgery for skull base meningiomas: review of the literature. Neurol Med Chir (Tokyo). 2015;55(9):735–43.  https://doi.org/10.2176/nmc.ra.2015-0031.CrossRefGoogle Scholar
  5. 5.
    Singh R, Baby B, Damodaran N, Srivastav V, Suri A, Banerjee S, Kumar S, Kalra P, Prasad S, Paul K, Anand S, Kumar S, Dhiman V, Ben-Israel D, Kapoor KS. Design and validation of an open source partial task trainer for endonasal neuro-endoscopic skills development: Indian experience. World Neurosurg. 2016;86:259–69.  https://doi.org/10.1016/j.wneu.2015.09.045.CrossRefPubMedGoogle Scholar
  6. 6.
    Hara T, Akutsu H, Yamamoto T, Tanaka S, Takano S, Ishikawa E, Matsuda M, Matsumura A. Cranial base repair using suturing technique combined with a mucosal flap for cerebrospinal fluid leakage during endoscopic endonasal surgery. World Neurosurg. 2015;84(6):1887–93.  https://doi.org/10.1016/j.wneu.2015.08.025.CrossRefPubMedGoogle Scholar
  7. 7.
    Martín-Martín C, Martínez-Capoccioni G, Serramito-García R, Espinosa-Restrepo F. Surgical challenge: endoscopic repair of cerebrospinal fluid leak. BMC Res Notes. 2012;5:459.  https://doi.org/10.1186/1756-0500-5-459.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vaz-Guimaraes F, Rastelli MM Jr, Fernandez-Miranda JC, Wang EW, Gardner PA, Snyderman CH. Impact of dynamic endoscopy and bimanual-binarial dissection in endoscopic endonasal surgery training: a laboratory investigation. J Neurol Surg B Skull Base. 2015;76(5):365–71.  https://doi.org/10.1055/s-0034-1544124.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zaidi HA, Zehri A, Smith TR, Nakaji P, Laws ER Jr. Efficacy of three-dimensional endoscopy for ventral skull base pathology: a systematic review of the literature. World Neurosurg. 2015;86:419–31.  https://doi.org/10.1016/j.wneu.2015.10.004.CrossRefPubMedGoogle Scholar
  10. 10.
    Felisati G, Lenzi R, Pipolo C, Maccari A, Messina F, Revay M, Lania A, Cardia A, Lasio G. Endoscopic expanded endonasal approach: preliminary experience with the new 3D endoscope. Acta Otorhinolaryngol Ital. 2013;33(2):102–6.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Banu MA, Rathman A, Patel KS, Souweidane MM, Anand VK, Greenfield JP, Schwartz TH. Corridor-based endonasal endoscopic surgery for pediatric skull base pathology with detailed radioanatomic measurements. Neurosurgery. 2014;10(Suppl 2):273–93.; discussion 293.  https://doi.org/10.1227/NEU.0000000000000252.CrossRefPubMedGoogle Scholar
  12. 12.
    Banu MA, Guerrero- Maldonado A, McCrea HJ, Garcia-Navarro V, Souweidane MM, Anand VK, Heier L, Schwartz TH, Greenfield JP. Impact of skull base development on endonasal endoscopic surgical corridors. J Neurosurg Pediatr. 2014;13(2):155–69.  https://doi.org/10.3171/2013.10.PEDS13303.CrossRefPubMedGoogle Scholar
  13. 13.
    Wurm J, Dannenmann T, Bohr C, Iro H, Bumm K. Increased safety in robotic paranasal sinus and skull base surgery with redundant navigation and automated registration. Int J Med Robot. 2005;1(3):42–8.CrossRefGoogle Scholar
  14. 14.
    Moral AI, Kunkel ME, Tingelhoff K, Rilk M, Wagner I, Eichhorn KG, Bootz F, Wahl FM. 3D endoscopic approach for endonasal sinus surgery. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4683–6.PubMedGoogle Scholar
  15. 15.
    Hockstein NG, Nolan JP, O’Malley BW Jr, Woo YJ. Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections. Laryngoscope. 2005;115(6):1003–8.CrossRefGoogle Scholar
  16. 16.
    O’Malley BW Jr, Weinstein GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys. 2007;69(Suppl 2):S125–8.CrossRefGoogle Scholar
  17. 17.
    Kayhan FT, Güneş S, Koç AK, Yiğider AP, Kaya KH. Management of laryngoceles by transoral robotic approach. J Craniofac Surg. 2016;27(4):981–5.  https://doi.org/10.1097/SCS.0000000000002641.CrossRefPubMedGoogle Scholar
  18. 18.
    Kayhan FT, Yigider AP, Koc AK, Kaya KH, Erdim I. Treatment of tongue base masses in children by transoral robotic surgery. Eur Arch Otorhinolaryngol. 2017;274(9):3457–63.  https://doi.org/10.1007/s00405-017-4646-0.CrossRefPubMedGoogle Scholar
  19. 19.
    Ozer E, Durmus K, Carrau RL, de Lara D, DitzelFilho LF, Prevedello DM, Otto BA, Old MO. Applications of transoral, transcervical, transnasal, and transpalatal corridors for robotic surgery of the skull base. Laryngoscope. 2013;123(9):2176–9.  https://doi.org/10.1002/lary.24034.CrossRefPubMedGoogle Scholar
  20. 20.
    Kupferman ME, Demonte F, Levine N, Hanna E. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base. 2011;21(2):79–82.  https://doi.org/10.1055/s-0030-1261258.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dallan I, Castelnuovo P, Montevecchi F, Battaglia P, Cerchiai N, Seccia V, Vicini C. Combined transoral transnasal robotic-assisted nasopharyngectomy: a cadaveric feasibility study. Eur Arch Otorhinolaryngol. 2012;269(1):235–9.  https://doi.org/10.1007/s00405-011-1550-x.CrossRefPubMedGoogle Scholar
  22. 22.
    Carrau RL, Prevedello DM, de Lara D, Durmus K, Ozer E. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck. 2013;35(11):E351–8.  https://doi.org/10.1002/hed.23238.CrossRefPubMedGoogle Scholar
  23. 23.
    Chauvet D, Missistrano A, Hivelin M, Carpentier A, Cornu P, Hans S. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study. Neurosurg Rev. 2014;37(4):609–17.  https://doi.org/10.1007/s10143-014-0553-7.CrossRefPubMedGoogle Scholar
  24. 24.
    Cho HJ, Kang JW, Min HJ, Chung HJ, Park Do Y, Ha JG, Baek SH, Yoon JH, Kim CH. Robotic nasopharyngectomy via combined endonasal and transantral port: a preliminary cadaveric study. Laryngoscope. 2015;125(8):1839–43.  https://doi.org/10.1002/lary.25283.CrossRefPubMedGoogle Scholar
  25. 25.
    Wei WI, Ho WK. Transoral robotic resection of recurrent nasopharyngeal carcinoma. Laryngoscope. 2010;120(10):2011–4.  https://doi.org/10.1002/lary.21059.CrossRefPubMedGoogle Scholar
  26. 26.
    Tsang RK, To VS, Ho AC, Ho WK, Chan JY, Wei WI. Early results of robotic assisted nasopharyngectomy for recurrent nasopharyngeal carcinoma. Head Neck. 2015;37(6):788–93.  https://doi.org/10.1002/hed.23672.CrossRefPubMedGoogle Scholar
  27. 27.
    Tsang RK, Ho WK, Wei WI, Chan JY. Transoral robotic assisted nasopharyngectomy via a lateral palatal flap approach. Laryngoscope. 2013;123(9):2180–3.  https://doi.org/10.1002/lary.24089.CrossRefPubMedGoogle Scholar
  28. 28.
    Chan JY. Surgical management of recurrent nasopharyngeal carcinoma. Oral Oncol. 2014;50(10):913–7.  https://doi.org/10.1016/j.oraloncology.2013.05.003.CrossRefPubMedGoogle Scholar
  29. 29.
    Chan JY, Richmon JD. Transoral robotic surgery (TORS) for benign pharyngeal lesions. Otolaryngol Clin North Am. 2014;47(3):407–13.  https://doi.org/10.1016/j.otc.2014.02.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Xu T, Tang J, Gu M, Liu L, Wei W, Yang H. Recurrent nasopharyngeal carcinoma: a clinical dilemma and challenge. Curr Oncol. 2013;20(5):e406–19.  https://doi.org/10.3747/co.20.1456.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    O’Malley BW Jr, Quon H, Leonhardt FD, Chalian AA, Weinstein GS. Transoral robotic surgery for parapharyngeal space tumors. ORL J Otorhinolaryngol Relat Spec. 2010;72(6):332–6.  https://doi.org/10.1159/000320596.CrossRefPubMedGoogle Scholar
  32. 32.
    Mendelsohn AH. Transoral robotic assisted resection of the parapharyngeal space. Head Neck. 2015;37(2):273–80.  https://doi.org/10.1002/hed.23724.CrossRefPubMedGoogle Scholar
  33. 33.
    Trévillot V, Garrel R, Dombre E, Poignet P, Sobral R, Crampette L. Robotic endoscopic sinus and skull base surgery: review of the literature and future prospects. Eur Ann Otorhinolaryngol Head Neck Dis. 2013;130(4):201–7.  https://doi.org/10.1016/j.anorl.2012.03.010.CrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen Y, Miroir M, Vellin JF, Mazalaigue S, Bensimon JL, Bernardeschi D, Ferrary E, Sterkers O, Grayeli AB. Minimally invasive computer-assisted approach for cochlear implantation: a human temporal bone study. Surg Innov. 2011;18(3):259–67.  https://doi.org/10.1177/1553350611405220.CrossRefPubMedGoogle Scholar
  35. 35.
    Mandapathil M, Duvvuri U, Güldner C, Teymoortash A, Lawson G, Werner JA. Transoral surgery for oropharyngeal tumors using the Medrobotics(®) flex(®) system – a case report. Int J Surg Case Rep. 2015;10:173–5.  https://doi.org/10.1016/j.ijscr.2015.03.030.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Remacle M, Prasad MN, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics flex™ system: first surgical application on humans. Eur Arch Otorhinolaryngol. 2015;272(6):1451–5.  https://doi.org/10.1007/s00405-015-3532-x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ayse Pelin Gör Yiğider
    • 1
  • Fatma Tülin Kayhan
    • 1
    • 2
  1. 1.Department of OtorhinolaryngologyUniversity of Health Sciences, Bakırköy Training and Research HospitalIstanbulTurkey
  2. 2.Surgeon in Private PracticeMega-Med Health Services Ltd CoIstanbulTurkey

Personalised recommendations