Advertisement

Clinical Assessment of Mucociliary Disorders

  • Uzdan UzEmail author
  • Kıvanç Günhan
  • Noam Cohen
Chapter

Abstract

There has been growing appreciation of the significant role played by the mucociliary transport system in the body. Mucociliary clearance is a critical host defense mechanism of the airways. Effective mucociliary clearance requires appropriate mucus production and coordinated ciliary activity. Mucociliary transport is responsible for primary innate immunity in the respiratory tract. In order to assess mucociliary transport and diseases resulting from mucociliary transport dysfunction, it is first necessary to understand the cellular anatomy and physiology that drive mucociliary function. The primary function of this epithelium is as a protective barrier. There are two different liquid layers coating the epithelial surface: the viscous outer gel layer and the thin inner periciliary layer. The gel layer of the mucus consists of mucin glycoproteins, secreted by goblet cells and submucosal glands. The mucin traps the bacterial compounds, pathogens, and inhaled debris, and coordinated ciliary activity propels the debris-laden mucus toward the glottis for elimination. This action is called mucociliary clearance. Ciliary disorders are divided into two categories: primary (inherited) and secondary (acquired). Primary ciliary dyskinesia (PCD) is a collection of genetic defects in cilia structure resulting in defective ciliary activity. Secondary ciliary dyskinesia (SCD) or acquired ciliary dyskinesia is a transient defect immunociliary clearance that occurs after viral or bacterial infection, tobacco smoke, pollutant exposure, as well as during allergic inflammation. In this chapter, clinical assessment of mucociliary disorders are discussed.

Keywords

Mucociliary Disorders Primary ciliary dyskinesia Secondary ciliary dyskinesia Epithelium 

References

  1. 1.
    Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13(5):1177–88.PubMedGoogle Scholar
  2. 2.
    Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis. 2011;5(4):255–73.PubMedGoogle Scholar
  3. 3.
    Krasteva G, Canning BJ, Papadakis T, Kummer W. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci. 2012;91(21–22):992–6.PubMedGoogle Scholar
  4. 4.
    Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124(3):1393–405.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest. 1998;102(6):1125–31.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70:459–86.PubMedGoogle Scholar
  7. 7.
    Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137(3):726–41.PubMedGoogle Scholar
  8. 8.
    Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Human molecular genetics. 2003;12 Spec No 1:R27–35.Google Scholar
  9. 9.
    Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan TF Jr, et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener’s syndrome). J Med Genet. 1994;31(6):493–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ciancio N, de Santi MM, Campisi R, Amato L, Di Martino G, Di Maria G. Kartagener’s syndrome: review of a case series. Multidiscip Respir Med. 2015;10(1):18.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Saano V, Virta P, Joki S, Nuutinen J, Karttunen P, Silvasti M. ATP induces respiratory ciliostimulation in rat and guinea pig in vitro and in vivo. Rhinology. 1992;30(1):33–40.PubMedGoogle Scholar
  12. 12.
    Kuehni CE, Frischer T, Strippoli MP, Maurer E, Bush A, Nielsen KG, et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J. 2010;36(6):1248–58.PubMedGoogle Scholar
  13. 13.
    Sturgess JM, Turner JA. Ultrastructural pathology of cilia in the immotile cilia syndrome. Perspect Pediatr Pathol. 1984;8(2):133–61.PubMedGoogle Scholar
  14. 14.
    Kay VJ, Irvine DS. Successful in-vitro fertilization pregnancy with spermatozoa from a patient with Kartagener’s syndrome: case report. Hum Reprod. 2000;15(1):135–8.PubMedGoogle Scholar
  15. 15.
    Munro NC, Currie DC, Lindsay KS, Ryder TA, Rutman A, Dewar A, et al. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax. 1994;49(7):684–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Afzelius BA, Eliasson R. Male and female infertility problems in the immotile-cilia syndrome. Eur J Respir Dis Suppl. 1983;127:144–7.PubMedGoogle Scholar
  17. 17.
    Passali D, Bianchini Ciampoli M. Normal values of mucociliary transport time in young subjects. Int J Pediatr Otorhinolaryngol. 1985;9(2):151–6.PubMedGoogle Scholar
  18. 18.
    Canciani M, Barlocco EG, Mastella G, de Santi MM, Gardi C, Lungarella G. The saccharin method for testing mucociliary function in patients suspected of having primary ciliary dyskinesia. Pediatr Pulmonol. 1988;5(4):210–4.PubMedGoogle Scholar
  19. 19.
    De Boeck K, Proesmans M, Mortelmans L, Van Billoen B, Willems T, Jorissen M. Mucociliary transport using 99mTc-albumin colloid: a reliable screening test for primary ciliary dyskinesia. Thorax. 2005;60(5):414–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Marthin JK, Mortensen J, Pressler T, Nielsen KG. Pulmonary radioaerosol mucociliary clearance in diagnosis of primary ciliary dyskinesia. Chest. 2007;132(3):966–76.PubMedGoogle Scholar
  21. 21.
    Collins SA, Gove K, Walker W, Lucas JS. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J. 2014;44(6):1589–99.PubMedGoogle Scholar
  22. 22.
    Kharitonov SA, Wells AU, O’Connor BJ, Cole PJ, Hansell DM, Logan-Sinclair RB, et al. Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med. 1995;151(6):1889–93.PubMedGoogle Scholar
  23. 23.
    Chiappori A, De Ferrari L, Folli C, Mauri P, Riccio AM, Canonica GW. Biomarkers and severe asthma: a critical appraisal. Clin Mol Allergy. 2015;13:20.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Karadag B, James AJ, Gultekin E, Wilson NM, Bush A. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J. 1999;13(6):1402–5.PubMedGoogle Scholar
  25. 25.
    Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc. 2013;10(6):574–81.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mateos-Corral D, Coombs R, Grasemann H, Ratjen F, Dell SD. Diagnostic value of nasal nitric oxide measured with non-velum closure techniques for children with primary ciliary dyskinesia. J Pediatr. 2011;159(3):420–4.PubMedGoogle Scholar
  27. 27.
    Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J. 2014;44(6):1579–88.PubMedGoogle Scholar
  28. 28.
    Rutland J, Griffin WM, Cole PJ. Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. Am Rev Respir Dis. 1982;125(1):100–5.PubMedGoogle Scholar
  29. 29.
    de Iongh RU, Rutland J. Ciliary defects in healthy subjects, bronchiectasis, and primary ciliary dyskinesia. Am J Respir Crit Care Med. 1995;151(5):1559–67.PubMedGoogle Scholar
  30. 30.
    Gyi A, O’Callaghan C, Langton JA. Effect of halothane on cilia beat frequency of ciliated human respiratory epithelium in vitro. Br J Anaesth. 1994;73(4):507–10.PubMedGoogle Scholar
  31. 31.
    Morillas HN, Zariwala M, Knowles MR. Genetic causes of bronchiectasis: primary ciliary dyskinesia. Respiration. 2007;74(3):252–63.PubMedGoogle Scholar
  32. 32.
    Olin JT, Burns K, Carson JL, Metjian H, Atkinson JJ, Davis SD, et al. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr Pulmonol. 2011;46(5):483–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    O’Callaghan C, Rutman A, Williams GM, Hirst RA. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J. 2011;38(3):603–7.PubMedGoogle Scholar
  34. 34.
    Shoemark A, Dixon M, Corrin B, Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J Clin Pathol. 2012;65(3):267–71.PubMedGoogle Scholar
  35. 35.
    Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84(2):197–209.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 2013;93(3):561–70.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jackson CL, Behan L, Collins SA, Goggin PM, Adam EC, Coles JL, et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J. 2016;47(3):837–48.PubMedGoogle Scholar
  38. 38.
    Boon M, Smits A, Cuppens H, Jaspers M, Proesmans M, Dupont LJ, et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis. 2014;9:11.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jorissen M, Willems T, Van der Schueren B, Verbeken E, De Boeck K. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta Otorhinolaryngol Belg. 2000;54(3):343–56.PubMedGoogle Scholar
  40. 40.
    Hirst RA, Jackson CL, Coles JL, Williams G, Rutman A, Goggin PM, et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One. 2014;9(2):e89675.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Hirst RA, Rutman A, Williams G, O’Callaghan C. Ciliated air-liquid cultures as an aid to diagnostic testing of primary ciliary dyskinesia. Chest. 2010;138(6):1441–7.PubMedGoogle Scholar
  42. 42.
    Omran H, Loges NT. Immunofluorescence staining of ciliated respiratory epithelial cells. Methods Cell Biol. 2009;91:123–33.PubMedGoogle Scholar
  43. 43.
    Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174(2):120–6.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Olbrich H, Horvath J, Fekete A, Loges NT, Storm van’s Gravesande K, Blum A, et al. Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr Res. 2006;59(3):418–22.PubMedGoogle Scholar
  45. 45.
    Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008;456(7222):611–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91(4):672–84.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189(6):707–17.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 2014;5:4418.PubMedGoogle Scholar
  49. 49.
    Kim RH, A Hall D, Cutz E, Knowles MR, Nelligan KA, Nykamp K, et al. The role of molecular genetic analysis in the diagnosis of primary ciliary dyskinesia. Ann Am Thorac Soc. 2014;11(3):351–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016;51(2):115–32.PubMedGoogle Scholar
  51. 51.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.PubMedGoogle Scholar
  52. 52.
    Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol. 2005;39(4):292–8.PubMedGoogle Scholar
  53. 53.
    Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–15.PubMedGoogle Scholar
  54. 54.
    Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell. 1998;2(3):397–403.PubMedGoogle Scholar
  55. 55.
    Machen TE. Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol. 2006;291(2):C218–30.PubMedGoogle Scholar
  56. 56.
    Imundo L, Barasch J, Prince A, Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci U S A. 1995;92(7):3019–23.PubMedPubMedCentralGoogle Scholar
  57. 57.
    O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–904.PubMedGoogle Scholar
  58. 58.
    Hurley MN, McKeever TM, Prayle AP, Fogarty AW, Smyth AR. Rate of improvement of CF life expectancy exceeds that of general population—observational death registration study. J Cyst Fibros. 2014;13(4):410–5.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dodge JA, Lewis PA, Stanton M, Wilsher J. Cystic fibrosis mortality and survival in the UK: 1947-2003. Eur Respir J. 2007;29(3):522–6.PubMedGoogle Scholar
  60. 60.
    Brihaye P, Jorissen M, Clement PA. Chronic rhinosinusitis in cystic fibrosis (mucoviscidosis). Acta Otorhinolaryngol Belg. 1997;51(4):323–37.PubMedGoogle Scholar
  61. 61.
    Mishra A, Greaves R, Smith K, Carlin JB, Wootton A, Stirling R, et al. Diagnosis of cystic fibrosis by sweat testing: age-specific reference intervals. J Pediatr. 2008;153(6):758–63.PubMedGoogle Scholar
  62. 62.
    Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr. 2008;153(2):S4–S14.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Carson JL, Collier AM, Hu SS. Acquired ciliary defects in nasal epithelium of children with acute viral upper respiratory infections. N Engl J Med. 1985;312(8):463–8.PubMedGoogle Scholar
  64. 64.
    Jorissen M, Willems T, Van der Schueren B, Verbeken E. Secondary ciliary dyskinesia is absent after ciliogenesis in culture. Acta Otorhinolaryngol Belg. 2000;54(3):333–42.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyUniversity of Health Sciences, Izmir Bozyaka Training and Research HospitalİzmirTurkey
  2. 2.Department of OtorhinolaryngologyManisa Celal Bayar UniversityManisaTurkey
  3. 3.Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations