Clinical Assessment of Nasal Airway Obstruction

  • Ethem SahinEmail author
  • Burak Çakır
  • Klaus Vogt


For the evaluation of nasal airway obstruction physical examination, anterior rhinoscopy, laboratory workup, imaging studies, and rhinomanometric studies may be required. Laboratory workup may consist of counts of neutrophil investigating infectious diseases, eosinophil for allergy-related disorders, and mast cell in food allergy. Imaging workup contains computed tomography (CT) and magnetic resonance imaging. Physically based studies involve rhinomanometry and acoustic rhinometry techniques. Nasal resistance is responsible for more than 50% of the resistance of the total airway. Nasal resistance is made up of two layers: the deeper layer consists of underlying bone, cartilage, and muscle, while superficially the overlying mucosa forms the second layer. Environmental and intrinsic conditions both alter nasal resistance. Variables reducing resistance consist of sympathomimetics, atrophic rhinitis, exercise, rebreathing, along with erect posture. Exercise leads to sympathetic vasoconstriction and shrinkage of the ala nasi, dilating the nasal cavities. Infectious rhinitis, vasomotor rhinitis, allergic rhinitis, supine posture, hyperventilation, cold air, aspirin, and alcohol increase nasal resistance. To better understand the relations between form and resistance of the nasal air channel, one of the basic laws in fluid dynamics is very helpful. The law of Hagen–Poiseuille is valid for the resistance of round tubes, which means that in a tube, the resistance R increases linear with the viscosity of the fluid and the length of the tube but with the 4 power of the tube radius. Reducing the radius to the half leads to a 16-fold increase of resistance.


Nasal airway Obstruction Clinical assessment Nasal resistance The law of Hagen–Poiseuille 


  1. 1.
    Lin SJ. Nasal aerodynamics. In: Meyers AD, editor. Medscape. Accessed 4 July 2015.
  2. 2.
    Bailey B, editor. Nasal function and evaluation, nasal obstruction. Head and neck surgery: otolaryngology. 2nd ed. New York: Lippincott-Raven; 1998. p. 335–44, 376, 380–90.Google Scholar
  3. 3.
    Kerr A, editor. Rhinology. Scott-Brown’s otolaryngology. 6th ed. Oxford: Butterworth-Heinemann; 1997.Google Scholar
  4. 4.
    Cummings C. Otolaryngology: head and neck surgery. St. Louis: Mosby Year-Book; 1999. p. 801–6, 816, 820.Google Scholar
  5. 5.
    Myers AD, editor. Biological basis of facial plastic surgery. New York: Thieme Medical Publisher; 1993.Google Scholar
  6. 6.
    Cole P, Forsyth R, Haight JS. Effects of cold air and exercise on nasal patency. Ann Otol Rhinol Laryngol. 1983;92(2 Pt 1):196–8.CrossRefGoogle Scholar
  7. 7.
    Sasaki CT, Mann DG. Dilator naris function: a useful test of facial nerve integrity. Arch Otolaryngol. 1976;102(6):365–7.CrossRefGoogle Scholar
  8. 8.
    Rivron RP, Sanderson RJ. The voluntary control of nasal airway resistance. Rhinology. 1991;29(3):181–4.PubMedGoogle Scholar
  9. 9.
    Krouse J, Lund V, Fokkens W, Meltzer EO. Diagnostic strategies in nasal congestion. Int J Gen Med. 2010;3:59–67.CrossRefGoogle Scholar
  10. 10.
    Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(Suppl):S147–334.CrossRefGoogle Scholar
  11. 11.
    Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 updated (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy. 2008;63(Suppl 86):8–160.CrossRefGoogle Scholar
  12. 12.
    Fokkens W, Lund V, Mullol J. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl. 2007;20:1–136.Google Scholar
  13. 13.
    Lund VJ, Mackay IS. Staging in rhinosinusitis. Rhinology. 1993;31(4):183–4.PubMedGoogle Scholar
  14. 14.
    Krouse JH. Computed tomography stage, allergy testing, and quality of life in patients with sinusitis. Otolaryngol Head Neck Surg. 2000;123(4):389–92.CrossRefGoogle Scholar
  15. 15.
    McNeill E, O’Hara J, Carrie S. The significance of MRI findings for non-rhinological disease. Clin Otolaryngol. 2006;31(4):292–6.CrossRefGoogle Scholar
  16. 16.
    Sipilä J, Suonpää J, Laippala P. Sensation of nasal obstruction compared to rhinomanometric results in patients referred for septoplasty. Rhinology. 1994;32(3):141–4.PubMedGoogle Scholar
  17. 17.
    Clement PA, Halewyck S, Gordts F, Michel O. Critical evaluation of different objective techniques of nasal airway assessment: a clinical review. Eur Arch Otorhinolaryngol. 2014;271(10):2617–25.CrossRefGoogle Scholar
  18. 18.
    Masing H. Die klinische Bedeutung der Nasenwiderstandsmessung. Eur Arch Otorhinolaryngol. 1965;185(2):763–7.CrossRefGoogle Scholar
  19. 19.
    Cottle M. Rhino-sphygmo-manometry: an aid in physical diagnosis. Int Rhinol. 1968;6(1/2):7–26.Google Scholar
  20. 20.
    Miller MR, Pincock AC. Linearity and temperature control of the Fleisch pneumotachograph. J Appl Physiol. 1986;60(2):710–5.CrossRefGoogle Scholar
  21. 21.
    Fleisch A. Der Pneumotachograph; ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflu¨ger’s Archiv fu¨r die gesamte Physiologie des Menschen und der Tiere. 1925;209(1):713–22.CrossRefGoogle Scholar
  22. 22.
    Cole P, Fenton RS. Contemporary rhinomanometry. J Otolaryngol. 2006;35(2):83–7.CrossRefGoogle Scholar
  23. 23.
    Clement P, Gordts F. Consensus report on acoustic rhinometry and rhinomanometry. Rhinology. 2005;43(3):169–79.Google Scholar
  24. 24.
    Vogt K. High resolution rhinomanometry. In: Jahnke K, editor. 4th Eufos Congress Berlin. Monduzzi editore; 2000. p. 113–4.Google Scholar
  25. 25.
  26. 26.
    Vogt K, Jalowayski AA, Althaus W, Cao C, Han D, Hasse W, Hoffrichter H, Mosges R, Pallanch J, Shah-Hosseini K, Peksis K, Wernecke KD, Zhang L, Zaporoshenko P. 4-phase-rhinomanometry (4PR)—basics and practice. Rhinol Suppl. 2010;21:1–50.PubMedGoogle Scholar
  27. 27.
    Vogt K, Bachmann-Harildstad G, Lintermann A, Nechyporenko A, Peters F, Wernecke KD. The new agreement of the international RIGA consensus conference on nasal airway function tests. Rhinology. 2018;56(2):133–43.CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Grymer LF, Hilberg O, Pedersen OF, Rasmussen TR. Acoustic rhinometry: values from adults with subjective normal nasal patency. Rhinology. 1991;29:35–47.PubMedGoogle Scholar
  30. 30.
    Lenders H, Pirsig W. Diagnostic value of acoustic rhinometry: patients with allergic and vasomotor rhinitis compared with normal controls. Rhinology. 1990;28:5–16.PubMedGoogle Scholar
  31. 31.
    Hamilton JW, McRae RD, Phillips DE, Jones AS. The accuracy of acoustic rhinometry using a pulse train signal. Clin Otolaryngol. 1995;20:279–82.CrossRefGoogle Scholar
  32. 32.
    Hilberg O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy. 2002;57(Suppl 70):5–39.CrossRefGoogle Scholar
  33. 33.
    Harar RPS, Kalan A, Kenyon GS. Improving the reproducibility of acoustic rhinometry in the assessment of nasal function. ORL. 2002;62:22–5.CrossRefGoogle Scholar
  34. 34.
    Cakmak O, Coskun M, Celik H, et al. Value of acoustic rhinometry for measuring nasal valve area. Laryngoscope. 2003;113:295–302.CrossRefGoogle Scholar
  35. 35.
    Numminen J, Dastidar P, Heinonen T. Reliability of acoustic rhinometry. Respir Med. 2003;97:421–7.CrossRefGoogle Scholar
  36. 36.
    Morris LG, Burschtin O, Lebowitz RA, Jacobs JB, Lee KC. Nasal obstruction and sleep-disordered breathing: a study using acoustic rhinometry. Am J Rhinol. 2005;19(1):33–9.CrossRefGoogle Scholar
  37. 37.
    Djupesland PG, Qian W, Furlott H, Rotnes JS, Cole P, Zamel N. Acoustic rhinometry: a study of transient and continuous noise techniques with nasal models. Am J Rhinol. 1999;13(4):323–9.CrossRefGoogle Scholar
  38. 38.
    Lenders H, Pirsig W. Acoustic rhinometry: a diagnostic tool for patients with chronic rhonchopathies. Rhinol Suppl. 1992;14:101.PubMedGoogle Scholar
  39. 39.
    Pirila T, Tikanto J. Acoustic rhinometry and rhinomanometry in the preoperative screening of septal surgery patients. Am J Rhinol Allerg. 2009;23(6):605–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyBayindir Içerenköy HospitalIstanbulTurkey
  2. 2.Department of OtorhinolaryngologyBeykent UniversityİstanbulTurkey
  3. 3.Faculty of MedicineCentre of Experimental Surgery, University of LatviaRigaLatvia

Personalised recommendations