Advertisement

Fish: Diapause, Dormancy, Aestivation, and Delay in Gonad Development

  • Dmitry L. Lajus
  • Victor R. AlekseevEmail author
Chapter
Part of the Monographiae Biologicae book series (MOBI, volume 92)

Abstract

The review addresses different types of dormancy on fish. It can be subdivided into two groups. The first is adult aestivation. This allows fish to survive droughts in low latitude freshwater environments (several species from various families), or ice coverage periods causing anoxic conditions in high latitudes (cyprinid Carassius spp.). It is a facultative phenomenon induced by various environmental cues (but not photoperiods), accompanied by specific biochemical adaptations that slow down the metabolism of aestivating individuals and allow their bodies to tolerate pollution from metabolic waste products. The second, more variable group is embryonic diapauses. These obligatory processes are well-integrated into the life cycle of fishes. It occurs in more than 30 killifish species (order Cyprinodontiformes) as a key adaptation that significantly expands their environmental range to include ephemeral pools. Diapause in several elasmobranch species occurs in the mother’s body. In bitterling Acheilognathus, diapause is a key adaptation to effectively use their limiting resource—the large bivalves where bitterlings deposit their eggs. Cessation of female gonad development after completing vitellogenesis is common in many species of high latitudes. This phenomenon has not been considered in the context of fish dormancy before, but biologically it fulfills the same functions as embryonic diapause and thus should be considered within the same framework. The effectiveness of life strategies containing diapause depends very much on both the sensitivity of dormant organisms to environmental stresses and the accuracy of their responses to environmental cues––primary changes in photoperiod or temperature to induce or terminate dormancy. The optimal strategy should balance phenotypic plasticity and bet-hedging as tools to maximize the fitness of diapausing organisms in partially predicted environments.

Keywords

Fish Diapause Aestivation Delay of gonad development 

Notes

Acknowledgments

The authors thank Karen Aleksander for improving the language of this manuscript. D.L. was supported by the Russian Science Foundation grant 19-14-00092, and V.A. got support from the Russian Foundation for Basic research grant 17-04-00027.

References

  1. Allardi J, Keith P (1991) Atlas préliminaire des poissons d’eau douce de France, Coll. Patrimoines Naturels, vol. 4. Secrétariat Faune Flore, Muséum national d’Histoire naturelle, Paris, 234pGoogle Scholar
  2. Blažka B (1958) The anaerobic metabolism of fish. Physiol Zool 31:117–128Google Scholar
  3. Blažka B (1960) On the biology of the crucian carp (Carassius carassius L. morpha humilis Heckel). Zool Zhurnal 9:1384–1389. (In Russian)Google Scholar
  4. Cellerino A, Valenzano DR, Reichard M (2016) From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev 91(2):511–533Google Scholar
  5. Chng YR, Ong JL, Ching B, Chen XL, Wong WP, Chew SF et al (2014) Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 184(7):835–853.  https://doi.org/10.1007/s00360-014-0842-z. PMID: 25034132CrossRefPubMedGoogle Scholar
  6. Chng YR, Ong JL, Ching B, Chen XL, Hiong KC, Wong WP et al (2016) Molecular characterization of aquaporin 1 and aquaporin 3 from the gills of the African lungfish, Protopterus annectens, and changes in their branchial mRNA expression levels and protein abundance during three phases of aestivation. Front Physiol 7:532.  https://doi.org/10.3389/fphys.2016.00532. PMID: 27891097CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chng YR, Ong JL, Ching B, Chen XL, Hiong KC, Wong WP et al (2017a) Aestivation induces changes in the mRNA expression levels and protein abundance of two isoforms of urea transporters in the gills of the African lungfish, Protopterus annectens. Front Physiol 8:71.  https://doi.org/10.3389/fphys.2017.00071. PMID: 28261105CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP et al (2017b) Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS ONE 12(10):e0185814.  https://doi.org/10.1371/journal.pone.0185814CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collin SP (1998) Retinal and lenticular ultrastructure in the aestivating salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) with special reference to a new type of photoreceptor mosaic. Histol Histopathol 13(4):1037–1048PubMedGoogle Scholar
  10. Cowan M, Azpeleta C, López-Olmeda JF (2017) Rhythms in the endocrine system of fish: a review. J Comp Physiol B Biochem Syst Environ Physiol 187(8):1057–1089CrossRefGoogle Scholar
  11. DeLaney RG, Lahiri S, Hamilton B, Fishman AP (1977) Acid-base balance and plasma composition in the aestivating lungfish (Protopterus). Am J Phys 232:RlO–R17Google Scholar
  12. Eldon GA (1979) Breeding, growth, and aestivation of the canterbury mudfish, Neochanna burrowsius (salmoniformes: Galaxiidae). N Z J Mar Freshw Res 13(3):331–346CrossRefGoogle Scholar
  13. Feklov YA (1997) Eco-hystophysiological analysis of oogenesis of peled. In: Problemy nadezhnosti funktsionirovania reproduktivnoi sistemy u ryb Trudy BINII, vol 44, pp 39–49Google Scholar
  14. Fishman AP, Pack AI, Delaney RG, Galante RJ (1986) Estivation in Protopterus. J Morphol 190(Suppl. 1):237–248CrossRefGoogle Scholar
  15. Furness AI (2016) The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev Camb Philos Soc 91(3):796–812CrossRefGoogle Scholar
  16. Furness AI, Reznick DN, Springer MS, Meredith RW (2015) Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish. Proc R Soc Lond Ser B Biol Sci 282:1–9CrossRefGoogle Scholar
  17. Galeotti DM, McCullough CD, Lund MA (2010) Black-stripe minnow Galaxiella nigrostriata (Shipway 1953) (Pisces: Galaxiidae), a review and discussion. J R Soc West Aust 93(1):13–20Google Scholar
  18. Gill HS, Morgan DL (2003) Ontogenetic changes in the diet of the black-stripe minnow Galaxiella nigrostriata (Shipway, 1953) (Galaxiidae) and the salamanderfish Lepidogalaxias salamandroides (Mees, 1961) (Lepidogalaxiidae). Ecol Freshw Fish 12(2):151–158CrossRefGoogle Scholar
  19. Graham JH, Freeman DC, Emlen JM (1993) Developmental stability: a sensitive indicator of populations under stress. In: Landis WG, Hughes JS, Lewis MA (eds) Environmental toxicology and risk assessment. American Society for Testing and Materials, Philadelphia, pp 136–158CrossRefGoogle Scholar
  20. Hand SC, Podrabsky JE (2000) Bioenergetics of diapause and quiescence in aquatic animals. Thermochim Acta 349(1-2):31–42CrossRefGoogle Scholar
  21. Hiong KC, Ip YK, Wong WP, Chew SF (2015) Differential gene expression in the liver of the African Lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation. PLoS ONE 10(3):e0121224.  https://doi.org/10.1371/journal.pone.0121224CrossRefPubMedPubMedCentralGoogle Scholar
  22. Holopainen IJ, Hyvärinen H (1984) Ecology and physiology of Crucian carp (Carassius carassius L.) in small Finnish ponds with anoxic conditions in winter. Verhandlungen Internationale Vereiningung fur theoretische und angewandte Limnology 22(4):2566–2570Google Scholar
  23. Hrbek T, Larson A (1999) The evolution of diapause in the killifish family Rivulidae (Atherinomorpha, Cyprinodontiformes): a molecular phylogenetic and biogeographic perspective. Evolution 53:1200–1216CrossRefGoogle Scholar
  24. Huber JH (2000) Killi-Data 2000. Updated checklist of taxonomic names, collecting localities and bibliographic references of oviparous Cyprinodont fishes (Cyprinodontiformes). Société Française d’Ichtyologie, ParisGoogle Scholar
  25. Hyvärinen H, Holopainen H, Piironen J (1985) Anaerobic wintering of crucian carp (Carassius carassius L.)-I. Annual dynamics of glycogen reserves in nature. Comp Biochem Physiol A Physiol 82(4):797–803CrossRefGoogle Scholar
  26. Kawamura K, Uehara K (2005) Effects of temperature on free-embryonic diapause in the autumn-spawning bitterling Acheilognathus rhombeus (Teleostei: Cyprinidae). J Fish Biol 67:684–695CrossRefGoogle Scholar
  27. Kawamura K, Ueda T, Arai R, Smith C (2014) Phylogenetic relationships of bitterling fishes (Teleostei: Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome b sequences. Zool Sci 31(5):321–329CrossRefGoogle Scholar
  28. Kazansky BN (1956) Ovogenez and adaptatsii, sviazannye s razmnozheniem u ryb. Doctoral dissertation thesis, Leningrad State University, LeningradGoogle Scholar
  29. Kitamura J (2005) Factors affecting seasonal mortality of rosy bitterling (Rhodeus ocellatus kurumeus) embryos on the gills of their host mussel. Popul Ecol 47(1):41–51.  https://doi.org/10.1007/s10144-004-0201-0CrossRefGoogle Scholar
  30. Lajus DL, Alekseev VR (2004) Phenotypic variation and developmental instability of life-history traits: a theory and a case study on within-population variation of resting eggs formation in Daphnia. J Limnol 63(Suppl. 1):37–44CrossRefGoogle Scholar
  31. Lajus DL, Graham JH, Kozhara AV (2003) Developmental instability and the stochastic component of total phenotypic variance. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 343–363Google Scholar
  32. Lefevre SL, Damsgaard C, Pascale DR, Nilsson GE, Stecyk JAW (2014) Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis. J Exp Biol 217:4387–4398.  https://doi.org/10.1242/jeb.105023CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lessa RPT (1982) Biologie et dynamique des populations de Rhinobatos horkelii du plateau continental du Rio Grande do Sul (Bre´sil). PhD thesis, Universite de Bretagne Occidentale, BrestGoogle Scholar
  34. Levels PJ, Denucé JM (1988) Intrinsic variability in the frequency of embryonic diapauses of the annual fish Nothobranchius korthausae, regulated by light: dark cycle and temperature. Environ Biol Fish 22(3):211–224CrossRefGoogle Scholar
  35. Loong AM, Chng YR, Chew SF, Wong WP, Ip YK (2012) Molecular characterization and mRNA expression of carbamoyl phosphate synthetase III in the liver of the African lungfish, Protopterus annectens, during aestivation or exposure to ammonia. J Comp Physiol B 182:367–379.  https://doi.org/10.1007/s00360-011-0626-7. PMID: 22038021CrossRefPubMedGoogle Scholar
  36. Matias JR (1984) The stage-dependent resistance of the chorion to external chemical damage and its relationship to embryonic diapause in the annual fish, Nothobranchius guentheri. Experientia 40:753–754CrossRefGoogle Scholar
  37. Matias JR, Markofsky J (1978) The survival of embryos of the annual fish Nothobranchius guentheri exposed to temperature extremes and the subsequent effects on embryonic Diapause. J Exp Zool 204(2):219–227CrossRefGoogle Scholar
  38. Mesquita-Saad LSB, Leitão MAB, Paula-Silva MN, Chippari-Gomes AR, Almeida-Val VMF (2002) Specialized metabolism and biochemical suppression during aestivation of the extant South American lungfish – Lepidosiren paradoxa. Braz J Biol 62(3):495–501CrossRefGoogle Scholar
  39. Moraes G, Altran AE, Avilez IM, Barbosa CC, Bidinotto PM (2005) Metabolic adjustments during semi-aestivation of the marble swamp eel (Synbranchus marmoratus, Bloch 1795) – a facultative air breathing fish. Brazilian J Biol 65(2):305–312CrossRefGoogle Scholar
  40. Morgan DL, Gill HS, Potter IC (2000) Age composition, growth and reproductive biology of the salamanderfish Lepidogalaxias salamandroides: A re-examination. Environ Biol Fish 57(2):191–204CrossRefGoogle Scholar
  41. Morris JA (1999) Aspects of the reproductive biology of the Bluntnose stingray, Dasyatis say, in the Indian River lagoon system. University of Central Florida, OrlandoGoogle Scholar
  42. Murphy WJ, Collier GE (1999) Phylogenetic relationships of African killifishes in the genera Aphyosemion and Fundulopanchax inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 11:351–360CrossRefGoogle Scholar
  43. Nagahama Y, Yamashita M (2008) Regulation of oocyte maturation in fish. Dev Growth Differ 50(Suppl):S195–S219Google Scholar
  44. Okazaki M, Naruse K, Shima A, Arai R (2001) Phylogenetic relationships of bitterlings based on mitochondrial 12S ribosomal DNA sequences. J Fish Biol 58:89–106.  https://doi.org/10.1006/jfbi.2000.1430CrossRefGoogle Scholar
  45. Ong JL, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP et al (2017) Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. J Comp Physiol B 187(4):575–589.  https://doi.org/10.1007/s00360-017-1057-x. PMID: 28184997CrossRefPubMedGoogle Scholar
  46. Page MM, Salway KD, Ip YK, Chew SF, Warren SA, Ballantyne JS, Stuart JA (2010) Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi. J Comp Physiol B Biochem Syst Environ Physiol 180(3):361–369CrossRefGoogle Scholar
  47. Parsons PA (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev 65:131–145CrossRefGoogle Scholar
  48. Peters N (1963) Embryonic adaptations of oviparous cyprinodonts from waters that are periodically desiccated. Int Rev Gesamten Hydrobiol 48:257–313CrossRefGoogle Scholar
  49. Petlina AP (1987) Opredelenie plodovitosti I stadia zrelosti ryb: uchebnoe posobie. Izdatelstvo Tomskogo universiteta, TomskGoogle Scholar
  50. Piironen J, Holopainen IJ (1986) A note on seasonality in anoxia tolerance of crucian carp (Carassius carassius L.) in the laboratory. Ann Zool Fenn 23:335–338Google Scholar
  51. Podrabsky JE, Lopez JP, Fan TWM, Higashi R, Somero GN (2007) Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: Insights from a metabolomics analysis. J Exp Biol 210(13):2253–2266CrossRefGoogle Scholar
  52. Podrabsky JE, Garrett IDF, Kohl ZF (2010a) Alternative developmental pathways associated with diapause regulated by temperature and maternal influences in embryos of the annual killifish Austrofundulus limnaeus. J Exp Biol 213:3280–3288CrossRefGoogle Scholar
  53. Podrabsky JE, Tingaud-Sequeira A, Cerda J (2010b) Metabolic dormancy and responses to environmental desiccation in fish embryos. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Topics in current genetics. Springer, Berlin, pp 203–226CrossRefGoogle Scholar
  54. Podushka SB (1976) Eksperimentalnyi analiz sezonnosta razmnozhenia plotvy I trekhigloi koliushki v sviazi s ekologo-fiziologicheskoi periodizatsiei oogeneza kostistykh ryb. PhD thesis, Leningrad State university, LeningradGoogle Scholar
  55. Polačik M, Janáč M (2017) Costly defense in a fluctuating environment—sensitivity of annual Nothobranchius fishes to predator kairomones. Ecol Evol 7(12):4289–4298CrossRefGoogle Scholar
  56. Pri-Tal BM, Blue S, Pau FK-Y, Podrabsky JE (2011) Hormonal components of altered developmental pathways in the annual killifish, Austrofundulus limnaeus. Gen Comp Endocrinol 174(2):166–174CrossRefGoogle Scholar
  57. Pusey BJ (1990) Seasonality, aestivation and the life history of the salamanderfish Lepidogalaxias salamandroides (Pisces: Lepidogalaxiidae). Environ Biol Fish 29(1):15–26CrossRefGoogle Scholar
  58. Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. The University of Chicago Press, Chicago, p 520CrossRefGoogle Scholar
  59. Rahman MM, Narejo NT, Ahmed GU, Bashar MR, Rahmatullah SM (2005) Effect of temperature on food, growth and survival rate of freshwater mud eel, Monopterus cuchia (Hamilton) during aestivation period. Pak J Zool 37(3):181–185Google Scholar
  60. Romo-Curiel AE, Sosa-Nishizaki O, Pérez-Jiménez JC, Rodríguez-Medrano MC (2017) Reproductive cycle and maternal–embryonic nutritional relationship of shovelnose guitarfish Pseudobatos productus in the Gulf of California. J Fish Biol 90(3):889–905CrossRefGoogle Scholar
  61. Sakun OF, Butskaya NA (1963) Opredelenie stadii zrelosti i izuchenie polovykh tsiklov ryb [Determination of gonad maturity and study of sexual cycles of fish]. Nauka, MoscowGoogle Scholar
  62. Schaefer FJ, Hermelink B, Husmann P, Meeus W, Adriaen J, Wuertz S (2016) Induction of gonadal maturation at different temperatures in burbot Lota lota. J Fish Biol 89(5):2268–2281CrossRefGoogle Scholar
  63. Scheel JJ (1990) Atlas of killifishes of the old world. T.F.H. Publications, Inc., Neptune CityGoogle Scholar
  64. Shoubridge EA, Hochachka PW (1980) Ethanol end product of vertebrate anaerobic metabolism. Science 209:307–308CrossRefGoogle Scholar
  65. Simons AM, Johnston MO (1997) Developmental instability as a bet-hedging strategy. Oikos 80:401–406CrossRefGoogle Scholar
  66. Simpfendorfer CA (1992) Reproductive strategy of the Australian sharpnose shark, Rhizoprionodon taylori (Elasmobranchii: Carcharhinidae), from Cleveland Bay, Northern Queensland. Aust J Mar Freshwat Res 43:67–75.  https://doi.org/10.1071/MF9920067CrossRefGoogle Scholar
  67. Skadovsky SN, Parfenova OI (1937) Effect of gravidan on ovary maturation and spawning of perch. Uchenye zapiski Moskovskogo universitita 9:139Google Scholar
  68. Smith HW (1931) Observations on the African lung-Wsh, Protopterus æthiopicus, and on evolution from water to land environments. Ecology 12:164–181CrossRefGoogle Scholar
  69. Smith C, Reichard M, Jurajda P, Przybylski M (2004) The reproductive ecology of the European bitterling (Rhodeus sericeus). J Zool 262:107–124CrossRefGoogle Scholar
  70. Suzuki N, Jeon SR (1991) Development of bitterling, Acheilognathus rhombeus (Cyprinidae), from Korea. J Basic Sci 5:53–62Google Scholar
  71. Taylor DS (2012) Twenty-four years in the mud: What have we learned about the natural history and ecology of the mangrove rivulus, Kryptolebias marmoratus? Integr Comp Biol 52(6):724–736CrossRefGoogle Scholar
  72. Tikkanen E, Haverinen J, Egginton S, Hassinen M, Vornanen M (2017) Effects of prolonged anoxia on electrical activity of the heart in Crucian carp (Carassius carassius). J Exp Biol 220(3):445–454.  https://doi.org/10.1242/jeb.145177CrossRefPubMedGoogle Scholar
  73. Tyler CR, Sumpter JP (1966) Oocytes growth and development in teleosts. Rev Fish Biol Fisher 6:287–318Google Scholar
  74. Waddington CH (1957) The strategy of the genes. George Allen and Unwin, LondonGoogle Scholar
  75. Waltrick D, Awruch C, Simpfendorfer C (2012) Embryonic diapause in the elasmobranchs. Rev Fish Biol Fish 22:849–859.  https://doi.org/10.1007/s11160-012-9267-5CrossRefGoogle Scholar
  76. Wildekamp RH (2004) A world of killies. Atlas of the Oviparous Cyprinodontiform fishes of the world. American Killifish Association, MishawakaGoogle Scholar
  77. WongTG ADD (2005) Optimal reproductive allocation in annuals and an informational constraint on plasticity. New Phytol 166:159–172Google Scholar
  78. Wourms JP (1972a) Developmental biology of annual fishes. I. Stages in the normal development of Austrofundulus myersi Dahl. J Exp Zool 182:143–167CrossRefGoogle Scholar
  79. Wourms JP (1972b) The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. J Exp Zool 182:169–200CrossRefGoogle Scholar
  80. Wourms JP (1972c) The developmental biology of annual fishes. III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. J Exp Zool 182:389–414CrossRefGoogle Scholar
  81. Wyffels JT (2009) Embryonic development of chondrichthyan fishes—a review. In: Kunz YW, Luer CA, Kapoor BG (eds) Development of non-teleost fishes. Science Publishers, Enfield, p 301Google Scholar
  82. Zakharov VM (1992) Population phenogenetics: analysis of developmental stability in natural populations. Acta Zool Fenn 191:7–30Google Scholar
  83. Zarski D, Targońska K, Kaszubowski R, Kestemont P, Fontaine P, Krejszeff S, Kupren K, Kucharczyk D (2013) Effect of different commercial spawning agents and thermal regime on the effectiveness of pikeperch, Sander lucioperca (L.), reproduction under controlled conditions. Aquac Int 21(4):819–828CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Zoological Institute of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations