Glutathione Metabolism in Yeasts and Construction of the Advanced Producers of This Tripeptide

  • Olena O. Kurylenko
  • Kostyantyn V. Dmytruk
  • Andriy Sibirny


Glutathione is the most abundant non-protein thiol compound of the most living organisms able to protect cells from nutritional, environmental, and oxidative stresses. Due to the antioxidative properties, glutathione is widely used as an active ingredient of drugs, food, and cosmetic products. Microbial synthesis using yeasts is currently the most common method for the commercial production of glutathione. Construction of glutathione overproducers in yeasts by metabolic engineering approaches and optimization of the technology for its production has potential to satisfy the increasing industrial demand in this tripeptide. This review summarizes the current knowledge of physiological functions and practical applications of glutathione as well as illustrates strategies for its efficient production. The potential of the methylotrophic yeast Ogataea polymorpha as a glutathione producer is also discussed.


Glutathione Yeasts Glutathione overproducers Metabolic engineering Ogataea (Hansenula) polymorpha 


  1. Achkor H, Diaz M, Fernandez RM, Biosca JA, Pare’s X, Martinez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K (1992a) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 36:538–540CrossRefGoogle Scholar
  3. Alfafara CG, Miura K, Shimizu H, Shioya S, Suga K (1992b) Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 37:141–146CrossRefGoogle Scholar
  4. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7, 8Google Scholar
  5. Bachhawat AK, Kaur A (2017) Glutathione degradation. Antioxid Redox Signal 27:1200–1216PubMedCrossRefGoogle Scholar
  6. Bachhawat A, Gangul D, Kaur J, Kasturia N, Thakur N, Kaur H, Kumar A, Yadav A (2009) Glutathione production in yeast. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 259–280CrossRefGoogle Scholar
  7. Bachhawat AK, Thakur A, Kaur J, Zulkifli M (2013) Glutathione transporters. Biochim Biophys Acta 1830:3154–3164PubMedCrossRefGoogle Scholar
  8. Baek M, Choy JH, Choi SJ (2012) Montmorillonite intercalated with glutathione for antioxidant delivery: synthesis, characterization, and bioavailability evaluation. Int J Pharm 425:29–34PubMedCrossRefGoogle Scholar
  9. Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cel Biol 217:2291–2298CrossRefGoogle Scholar
  10. Blazhenko OV, Zimmermann M, Kang HA, Bartosz G, Penninckx MJ, Ubiyvovk VM, Sibirny AA (2006) Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals 19:593–599PubMedCrossRefGoogle Scholar
  11. Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265PubMedCrossRefGoogle Scholar
  12. Brandsma D, Kerklaan BM, Diéras V, Altintas S, Anders CK, Ballester MA, Gelderblom H, Soetekouw PMMB, Gladdines W, Lonnqvist F et al (2014) Phase 1/2a study of glutathione pegylated liposomal doxorubicin (2b3-101) in patients with brain metastases (BM) from solid tumors or recurrent high grade gliomas (HGG). Ann Oncol 16:v159–v167Google Scholar
  13. Buonocore D, Grosini M, Giardina S, Michelotti A, Carrabetta M, Seneci A, Marzatico F (2016) Bioavailability study of an innovative orobuccal formulation of glutathione. Oxid Med Cell Longev 2:1–7CrossRefGoogle Scholar
  14. Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol. 135:1378–1387PubMedPubMedCentralCrossRefGoogle Scholar
  15. Calabrese G, Morgan B, Riemer J (2017) Mitochondrial glutathione: regulation and functions. Antioxid Redox Signal 27(15):1162–1177PubMedCrossRefGoogle Scholar
  16. Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM (1999) Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 17:567–574PubMedCrossRefGoogle Scholar
  17. Cha J, Park J, Jeon B, Lee Y, Cho Y (2004) Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J Microbiol 42:51–55PubMedGoogle Scholar
  18. Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. Embo Rep 7:271–275PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen G, Bunt C, Wen J (2015) Mucoadhesive polymers-based film as a carrier system for sublingual delivery of glutathione. J Pharm Pharmacol 67:26–34PubMedCrossRefGoogle Scholar
  20. Chiang HS, Maric M (2011) Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med. 51:688–699PubMedCrossRefGoogle Scholar
  21. Chu D (2013) Combination containing complex nucleoside, glutathione and yeast extract and application of combination in aspects of alleviating hangover and protecting liver. China Patent Application CN102886042 (A)Google Scholar
  22. Collinson EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497PubMedCrossRefGoogle Scholar
  23. Conticello C, Martinetti D, Adamo L, Buccheri S, Giuffrida R, Parrinello N, Lombardo L, Anastasi G, Amato G, Cavalli M et al (2012) Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 131:2197–2203PubMedCrossRefGoogle Scholar
  24. Corso CR, Acco A (2018) Glutathione system in animal model of solid tumors: from regulation to therapeutic target. Crit Rev Oncol Hematol 128:43–57PubMedCrossRefGoogle Scholar
  25. Couto N, Malys N, Gaskell SJ, Barber J (2013) Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J Proteome Res 12:2885–2894PubMedCrossRefPubMedCentralGoogle Scholar
  26. Couto N, Schooling SR, Dutcher JR, Barber J (2015) Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J Proteome Res 14:4207–4222PubMedCrossRefPubMedCentralGoogle Scholar
  27. Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42PubMedCrossRefPubMedCentralGoogle Scholar
  28. Crum A (2011) Nutritional or therapeutic compositions and methods to increase bodily glutathione levels. United States Reissued Patent USRE42645 (E)Google Scholar
  29. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Rad Biol Med 37:1511–1526PubMedCrossRefPubMedCentralGoogle Scholar
  30. Delaunay-Moisan A, Ponsero A, Toledano MB (2017) Reexamining the function of glutathione in oxidative protein folding and secretion. Antioxid Redox Signal 27:1178–1199PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dhaoui M, Auchere F, Blaiseau PL, Lesuisse E, Landoulsi A, Camadro JM, Haguenauer-Tsapis R, Belgareh-Touze N (2011) Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 22:2054–2067PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dmytruk K, Kurylenko O, Ruchala J, Ishchuk O, Sibirny A (2016) Development of the thermotolerant methylotrophic yeast Hansenula polymorpha as efficient ethanol producer. In: Satyanarayana T, Kunze G (eds) Yeast diversity in human welfare. Springer, Singapore, pp 257–282Google Scholar
  33. Dmytruk K, Kurylenko O, Ruchala J, Abbas C, Sibirny A (2017) Genetic improvement of conventional and nonconventional yeasts for the production of first- and second-generation ethanol. In: Sibirny A (ed) Biotechnology of yeasts and filamentous fungi. Springer, Cham, pp 1–38Google Scholar
  34. Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J (2018) Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 12:3535–3547PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275:32611–32616PubMedCrossRefGoogle Scholar
  36. Elskens MT, Jaspers CJ, Penninckx MJ (1991) Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137:637–644PubMedCrossRefGoogle Scholar
  37. Fei L, Wang Y, Chen S (2009) Improved glutathione production by gene expression in Pichia pastoris. Bioprocess Biosyst Eng 32:729–735PubMedCrossRefGoogle Scholar
  38. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12CrossRefGoogle Scholar
  39. Fraternale A, Brundu S, Magnani M (2017) Glutathione and glutathione derivatives in immunotherapy. Biological Chemistry 398:261–275PubMedCrossRefGoogle Scholar
  40. Fu D (2015) Yeast glutathione nutrition preparation. China Patent CN103750344 (B)Google Scholar
  41. Fujiwara S, Kawazoe T, Ohnishi K, Kitagawa T, Popa C, Valls M, Genin S, Nakamura K, Kuramitsu Y, Tanaka N (2016) RipAY, a plant pathogen effector protein, exhibits robust γ -glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J Biol Chem 291:6813–6830PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gaillard PJ, Kerklaan BM, Aftimos P, Altintas S, Jager A, Gladdines W, Lonnqvist F, Soetekouw P, Verheul H, Awada A et al (2014) Abstract CT216: Phase I dose escalating study of 2B3-101, glutathione PEGylated liposomal doxorubicin, in patients with solid tumors and brain metastases or recurrent malignant glioma. Cancer Res 74:CT216Google Scholar
  43. Ganguli D, Kumar C, Bachhawat AK (2007) The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 175:1137–1151PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garcerá A, Barreto L, Piedrafita L, Tamarit J, Herrero E (2006) Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 398:187–196PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M (2018) Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants 7:62PubMedCentralCrossRefGoogle Scholar
  46. Ge S, Zhu T, Li Y (2012) Expression of bacterial GshF in Pichia pastoris for glutathione production. Appl Environ Microbiol 78:5435–5439PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ge C, Spånning E, Glaser E, Wieslander Å (2014) Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. Mol Plant 7:121–136PubMedCrossRefPubMedCentralGoogle Scholar
  48. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gipp JJ, Chang C, Mulcahy RT (1992) Cloning and nucleotide sequence of a full-length cDNA for human liver γ -glutamylcysteine synthetase. Biochem Biophys Res Comm 185:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  50. Gipp JJ, Bailey HH, Mulcahy RT (1995) Cloning and sequence of the cDNA for the light subunit of human liver γ -glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Comm 206:584–589PubMedCrossRefGoogle Scholar
  51. Gogos A, Shapiro L (2002) Large conformational changes in the catalytic cycle of glutathione synthase. Structure 10:1669–1676PubMedCrossRefGoogle Scholar
  52. Gopal S, Borovok I, Ofer A, Yanku M, Cohen G, Goebel W, Aharonowitz Y (2005) A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol 187:3839–3847PubMedPubMedCentralCrossRefGoogle Scholar
  53. Grabek-Lejko D, Kurylenko O, Sibirny V, Ubiyvovk V, Penninckx M, Sibirny A (2011) Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 38:1853–1859PubMedCrossRefGoogle Scholar
  54. Grant CM, MacIver FH, Dawes IW (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide γ-glutamylcysteine. Mol Biol Cell 8:1699–1707PubMedPubMedCentralCrossRefGoogle Scholar
  55. Griffith OW, Meister A (1979) Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. PNAS USA. 76:268–272PubMedCrossRefGoogle Scholar
  56. Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS (2005) Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J Biol Chem 280:40524–40533PubMedCrossRefGoogle Scholar
  57. Gupta P, Wright SE, Kim SH, Srivastava SK (2014) Phenethyl isothiocyanate: a comprehensive review of anticancer mechanisms. Biochim Biophys Acta 1846:405–424PubMedPubMedCentralGoogle Scholar
  58. Gushima H, Miya T, Murata K, Kimura A (1983) Construction of glutathione producing strains of Escherichiacoli B by recombinant DNA techniques. Appl Biochem Biotechnol 5:43–52Google Scholar
  59. Hagen TM, Wierzbicka GT, Sillau AH, Bowman BB, Jones DP (1990) Bioavailability of dietary glutathione: effect on plasma concentration. Am J Physiol 259:G524–G529PubMedPubMedCentralGoogle Scholar
  60. Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A (2012) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:1313–1319PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5:39–60PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stohs SJ (2001) The glutathione defense system in the pathogenesis of rheumatoid arthritis. J Appl Toxicol 21:69–73PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hatem E, El Banna N, Huang ME (2017) Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid Redox Signal 27:1217–1234PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hersh T (1999) Intra-oral antioxidant preparations. United States Patent Application US5906811 (A)Google Scholar
  65. Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 276:14279–14288PubMedCrossRefGoogle Scholar
  66. Huang C, Anderson ME, Meister A (1993a) Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 268:20578–20583PubMedGoogle Scholar
  67. Huang C, Chang L, Anderson ME, Meister A (1993b) Catalytic and regulatory properties of the heavy subunit of rat kidney γ -glutamylcysteine synthetase. J Biol Chem 268:19675–19680PubMedGoogle Scholar
  68. Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L, Lu SC (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J 15:19–21PubMedCrossRefGoogle Scholar
  69. Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT (1997) Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1330:274–283PubMedCrossRefGoogle Scholar
  70. Janowiak BE, Griffith OW (2005) Glutathione synthesis in Streptococcus agalactiae: One protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem 280:11829–11839PubMedCrossRefGoogle Scholar
  71. Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33470PubMedCrossRefGoogle Scholar
  72. Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33:1290–1300PubMedCrossRefGoogle Scholar
  73. Kannan R, Mittur A, Bao Y, Tsuruo T, Kaplowitz N (1999) GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J Neurochem 73:390–399PubMedCrossRefGoogle Scholar
  74. Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195:701–729PubMedCrossRefGoogle Scholar
  75. Kaszycki P, Tyszka M, Malec P, Kołoczek H (2001) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177PubMedCrossRefGoogle Scholar
  76. Kaur H, Kumar C, Junot C, Toledano MB, Bachhawat AK (2009) Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem 284:14493–14502PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kaur H, Ganguli D, Bachhawat AK (2012) Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. J Biol Chem 287:8920–8931PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kaur A, Gautam R, Srivastava R, Chandel R, Kumar A, Karthikeyan S, Bachhawat AK (2017) The structure of ChaC2: an enzyme for slow turnover of cytosolic glutathione. J Biol Chem 292:638–651PubMedCrossRefGoogle Scholar
  79. Kelly BS, Antholine WE, Griffith OW (2002) Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. J Biol Chem 277:50–58PubMedCrossRefGoogle Scholar
  80. Kim OC, Suwannarangsee S, Oh DB, Kim S, Seo JW, Kim CH, Kang HA, Kim JY, Kwon O (2013) Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha. Bioprocess Biosyst Eng 36:1509–1518PubMedCrossRefGoogle Scholar
  81. Kiriyama K, Hara KY, Kondo A (2012) Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biotechnol 96:1021–1027PubMedCrossRefGoogle Scholar
  82. Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G (2002) An oligopeptide transporter gene family in Arabidopsis. Plant Physiol 128:21–29PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kritzinger EC, Bauer FF, du Toit WJ (2012) Role of glutathione in winemaking: a review. J Agric Food Chem 61:269–277PubMedCrossRefGoogle Scholar
  84. Kumar C, Sharma R, Bachhawat AK (2003) Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative glutathione degradation pathway. FEMS Microbiol Lett 219:187–194PubMedCrossRefGoogle Scholar
  85. Lagrain B, Thewissen BG, Brijs K, Delcour JA (2007) Impact of redox agents on the extractability of gluten proteins during bread making. J Agric Food Chem 55:5320–5325PubMedCrossRefGoogle Scholar
  86. Lai J, Lee S, Hsieh C, Hwang C, Liao C (2008) Saccharomyces cerevisiae strains for hyper-producing glutathione and γ-glutamylcysteine and processes of use. United States Patent 7371557Google Scholar
  87. Lash H, Jones DP (1983) Transport of glutathione by renal basal-lateral membrane vesicles. Biochem Biophys Res Commun 112:55–60PubMedCrossRefGoogle Scholar
  88. Lebo R, Kredich N (1978) Inactivation of human γ-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme ligand complexes. J Biol Chem 253:2615–2523PubMedGoogle Scholar
  89. Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M (2010) Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 21:456–469PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lee HG, Koo SH, Lim DY, Kim ES, Yoon HS, Lee JS, Kim GH (2015) Method for the production of food packaging film with enhanced glutathione stability. Republic of Korea Patent KR101492471 (B1)Google Scholar
  91. Liang G, Mo Y, Du G (2010) Optimization of sodium dedecyl sulfate (SDS) addition coupled with adenosine triphosphate (ATP) regeneration for glutathione overproduction in high density cultivation of Candida utilis. Enzym Microb Technol 46(6):526–533CrossRefGoogle Scholar
  92. Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517PubMedCrossRefGoogle Scholar
  93. Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242PubMedCrossRefGoogle Scholar
  94. Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D (2005) Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol 67:83–90PubMedCrossRefGoogle Scholar
  95. Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108:1–13CrossRefGoogle Scholar
  96. Li Z, Ye Q, Li W, Zhang S (2014) Method for producing glutathione by fermentation of recombinant Escherichia coli. China Patent CN102586369Google Scholar
  97. Liang G, Du G, Chen J (2008) Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis. Lett appl microbial 46:507–512CrossRefGoogle Scholar
  98. Lieber CS (2002) S-Adenosyl-L-methionine and alcoholic liver disease in animal models: implications for early intervention in human beings. Alcohol 27:173–177PubMedCrossRefGoogle Scholar
  99. Liedschulte V, Wachter A, Zhigang A, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820PubMedCrossRefGoogle Scholar
  100. Liu G, Sanchez-Fernandez R, Li ZS, Rea PA (2001) Enhanced multispecificity of arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2. J Biol Chem 276:8648–8656PubMedCrossRefGoogle Scholar
  101. Lo M, Ling V, Low C, Wang YZ, Gout PW (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol 17:9–16PubMedPubMedCentralGoogle Scholar
  102. Lorenz E, Schmacht M, Senz M (2016) Evaluation of cysteine ethyl ester as efficient inducer for glutathione overproduction in Saccharomyces spp. Enzyme Microb Technol 93–94:122–131PubMedCrossRefGoogle Scholar
  103. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59CrossRefGoogle Scholar
  104. Luo M, Boudier A, Clarot I, Maincent P, Schneider R, Leroy P (2016) Gold nanoparticles grafted by reduced glutathione with thiol function preservation. Colloid Interface Sci Commun 14:8–12CrossRefGoogle Scholar
  105. Lyu C (2016) Rice noodles capable of nourishing faces and protecting skins and preparation method of rice noodles. China Patent Application CN105410629 (A)Google Scholar
  106. Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 11:737–746PubMedCrossRefGoogle Scholar
  107. Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314PubMedCrossRefGoogle Scholar
  108. Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G (2011) New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In Vitro release of glutathione and oxytocin. J Biomater Sci Polym Ed 22:313–328PubMedCrossRefGoogle Scholar
  109. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249CrossRefGoogle Scholar
  110. Marz U (2014) Yeasts, yeast extracts, autolysates and related products: the global market,
  111. Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. PNAS USA 107:2331–2336PubMedCrossRefGoogle Scholar
  112. Mehdi K, Penninckx MJ (1997) An important role for glutathione and γ-glutamyl-transpeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 143:1885–1889PubMedCrossRefGoogle Scholar
  113. Meister A (1988) Glutathione. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 2nd edn. Raven Press, New York, pp 401–417Google Scholar
  114. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  115. Mezzetti F, De Vero L, Giudici P (2014) Evolved wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Res 14(6):977–987PubMedCrossRefPubMedCentralGoogle Scholar
  116. Mittl PR, Schulz GE (1994) Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: comparison with the enzyme from human erythrocytes. Protein Sci 3:799–809PubMedPubMedCentralCrossRefGoogle Scholar
  117. Naji-Tabasi S, Razavi SMA, Mehditabar H (2017) Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr Polym 157:1703–1713PubMedCrossRefGoogle Scholar
  118. Nakagawa T, Kaji N, Tokuriki M (2016) Use of yeast extract including glutathione as melanin production inhibitor. Taiwan Patent Application TW201620396 (A)Google Scholar
  119. Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR (2007) Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy 53:210–217PubMedCrossRefGoogle Scholar
  120. Nie W, Wei G, Du G, Li Y, Chen J (2005) Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Lett Appl Microbiol 40:378–384PubMedCrossRefPubMedCentralGoogle Scholar
  121. Noguti J, Barbisan LF, Cesar A, Dias Seabra C, Choueri RB, Ribeiro DA (2012) Review: in vivo models for measuring placental glutathione-S-transferase (GST-P7-7) levels: a suitable biomarker for understanding cancer pathogenesis. In Vivo 26:647–650PubMedPubMedCentralGoogle Scholar
  122. Oliveira P, Martins NM, Santos M, Couto NA, Wright PC, Tamagnini P (2015) The Anabaena sp. PCC 7120 exoproteome: taking a peek outside the box. Life 5:130–163PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ono B, Shirahige Y, Nanjoh A, Andou N, Ohue H, Ishino-Arao Y (1988) Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine β-synthase deficiency. J Bacteriol 170:5883–5889PubMedPubMedCentralCrossRefGoogle Scholar
  124. Oppenheimer L, Wellner VP, Griffith OW, Meister A (1979) Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J Biol Chem 254:5184–5190PubMedPubMedCentralGoogle Scholar
  125. Ortiz-Julien A (2012) Method for preventing defective ageing of white wines. United States Patent US8268372 (B2)Google Scholar
  126. Orumets K (2012) Molecular mechanisms controlling intracellular glutathione levels in baker’s yeast and a random mutagenized glutathione over-accumulating isolate. PhD Thesis, Tallinn university of technology, Tallinn, EstoniaGoogle Scholar
  127. Orumets K, Kevvai K, Nisamedtinov I, Tamm T, Paalme T (2012) YAP1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels. Biotechnol J 7:566–568PubMedCrossRefPubMedCentralGoogle Scholar
  128. Outten CE, Culotta VC (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279:7785–7791PubMedCrossRefPubMedCentralGoogle Scholar
  129. Oz HS, Chen TS, Nagasawa H (2007) Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res J Lab Clin Med 150:122–129CrossRefGoogle Scholar
  130. Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M (2015) Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol J 10:1719–1726PubMedCrossRefPubMedCentralGoogle Scholar
  131. Penninckx MJ, Elskens MT (1993) Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol 34:239–301PubMedCrossRefGoogle Scholar
  132. Penninckx MJ, Jaspers CJ (1985) Molecular and kinetic properties of purified γ-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae). Phytochemistry 24:1913–1918CrossRefGoogle Scholar
  133. Penninckx MJ, Jaspers C, Wiame JM (1980) Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of γ-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem 104:119–123PubMedCrossRefGoogle Scholar
  134. Perricone C, De Carolis C, Perricone R (2009) Glutathione: a key player in autoimmunity. Autoimmun Rev 8:697–701PubMedCrossRefGoogle Scholar
  135. Perrone GG, Grant CM, Dawes IW (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16:218–230PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261PubMedCrossRefGoogle Scholar
  137. Pocsi N, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv In Microb Physiol 49:2–76Google Scholar
  138. Qiu Z, Deng Z, Tan H, Zhou S, Cao L (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol 42:537–542PubMedCrossRefGoogle Scholar
  139. Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415:45–48PubMedCrossRefGoogle Scholar
  140. Rebbeor JF, Connolly GC, Dumont ME, Ballatori N (1998) ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance-associated proteins. J Biol Chem 273:33449–33454PubMedCrossRefGoogle Scholar
  141. Rebbeor JF, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat Mrp2. Biochim Biophys Acta 1559:171–178PubMedCrossRefGoogle Scholar
  142. Richman PG, Meister A (1975) Regulation of gamma-glutamycysteine synthetase b nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426PubMedPubMedCentralGoogle Scholar
  143. Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Goker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH et al (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci U S A 113:9882–9887PubMedPubMedCentralCrossRefGoogle Scholar
  144. Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, van Kregten J, van der Boom B, Appeldoorn C, de Boer M, Maussang D et al (2014) Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 22:460–467PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rollini M, Musatti A, Manzoni M (2010) Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochem 45(4):441–445CrossRefGoogle Scholar
  146. Rosemeyer MA (1987) The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem Funct 5:79–95PubMedCrossRefGoogle Scholar
  147. Rosenblat M, Volkova N, Coleman R, Aviram M (2007) Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice. Atherosclerosis 195:61–68CrossRefGoogle Scholar
  148. Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR, Rine J (2014) Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae. Mol Biol Cell 25:1653–1665PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sakato K, Tanaka H (1992) Advanced control of glutathione fermentation process. Biotechnol Bioeng 40(8):904–912PubMedCrossRefPubMedCentralGoogle Scholar
  150. Salvemini F, Franzé A, Iervolino A, Filosa S, Salzano S, Ursini MV (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274:2750–2757PubMedCrossRefGoogle Scholar
  151. Saucedo AC, Ambati BK (2016) Eye health supplement. United States Patent Application US20160030502 (A1)Google Scholar
  152. Sawers L, Ferguson MJ, Ihrig BR, Young HC, Chakravarty C, Wolf CR, Smith G (2014) Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines. Br J Cancer 111:1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  153. Schmacht M, Lorenz E, Senz M (2017a) Microbial production of glutathione. World J Microbiol 33:106CrossRefGoogle Scholar
  154. Schmacht M, Lorenz E, Stahl U, Senz M (2017b) Medium optimization based on yeast’s elemental composition for glutathione production in Saccharomyces cerevisiae. J Biosci Bioeng 123:555–561PubMedCrossRefGoogle Scholar
  155. Schneider A, Martini N, Rennenberg H (1992) Reduced glutathione (GSH) transport into cultured tobacco cells. Plant Physiol Biochem 30:29–38Google Scholar
  156. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, Rosati G (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1159–1170CrossRefGoogle Scholar
  158. Seelig GF, Simondsen RP, Meister A (1984) Reversible dissociation of γ -glutamylcysteine synthetase into two subunits. J Biol Chem 259:9345–9347PubMedPubMedCentralGoogle Scholar
  159. Shang F, Wang Z, Tan T (2008) High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77(6):1233–1240PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sharma KG, Mason DL, Liu G, Rea PA, Bachhawat AK, Michaelis S (2002) Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryot Cell 1:391–400PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sohn MJ, Yoo SJ, Oh DB, Kwon O, Lee SY, Sibirny AA, Kang HA (2014) Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9:e100725PubMedPubMedCentralCrossRefGoogle Scholar
  162. Soltaninassab SR, Sekhar KR, Meredith MJ, Freeman ML (2000) Multifaceted regulation of γ-glutamylcysteine synthetase. J Cel Physiol 182:163–170CrossRefGoogle Scholar
  163. Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7011–7016PubMedCrossRefPubMedCentralGoogle Scholar
  164. Springael J, Penninckx MJ (2003) Nitrogen-source regulation of yeast γ-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J 371:589–595PubMedPubMedCentralCrossRefGoogle Scholar
  165. Srikanth CV, Vats P, Bourbouloux A, Delrot S, Bachhawat AK (2005) Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast glutathione transporter, Hgt1p. Curr Genet 47:345–358PubMedCrossRefPubMedCentralGoogle Scholar
  166. Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275:15535–15540PubMedCrossRefPubMedCentralGoogle Scholar
  167. Suzuki H, Kumagai H, Tochikura T (1986) Gamma-glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol 168:1332–1335PubMedPubMedCentralCrossRefGoogle Scholar
  168. Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H (2005) The yliA, -B, -C, and –D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 187:5861–5867PubMedPubMedCentralCrossRefGoogle Scholar
  169. Thiermann M (2010) Non-surgical method for treating cataracts in mammals including man. United States Patent US7776364 (B2)Google Scholar
  170. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532PubMedPubMedCentralGoogle Scholar
  171. Toledano MB, Huang ME (2017) The unfinished puzzle of glutathione physiological functions, an old molecule that still retains many enigmas. Antioxid Redox Signal 27:1127–1129PubMedCrossRefGoogle Scholar
  172. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155PubMedPubMedCentralCrossRefGoogle Scholar
  173. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso MJ (2010) A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm 75:26–32PubMedCrossRefGoogle Scholar
  174. Tsunoda S, Avezov E, Zyryanova A, Konno T, Mendes-Silva L, Melo EP, Harding HP, Ron D (2014) Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. Elife 3:e03421PubMedPubMedCentralCrossRefGoogle Scholar
  175. Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA, Sibirny AA (2002) GSH2, a gene encoding gamma-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 2:327–332PubMedPubMedCentralGoogle Scholar
  176. Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA (2006) Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol Int 30:665–671PubMedCrossRefPubMedCentralGoogle Scholar
  177. Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA (2011a) Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11:8PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ubiyvovk VM, Blazhenko OV, Zimmermann M, Sohn MJ, Kang HA (2011b) Cloning and functional analysis of the GSH1/MET1 gene complementing cysteine and glutathione auxotrophy of the methylotrophic yeast Hansenula polymorpha. Ukr Biokhim Zh 83:67–81Google Scholar
  179. Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R (2014) Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem 61(12):1977–1980CrossRefGoogle Scholar
  180. Van Der Werf P, Orlowski M, Meister A (1971) Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the γ -glutamyl cycle. Proc Natl Acad Sci 68:2982–2985PubMedCrossRefPubMedCentralGoogle Scholar
  181. Veeravalli K, Boyd D, Iverson BL, Beckwith J, Georgiou G (2011) Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol 7:101–105PubMedCrossRefGoogle Scholar
  182. Vergauwen B, De Vos D, Van Beeumen JJ (2006) Characterization of the bifunctional γ-glutamate–cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem 281:4380–4394PubMedCrossRefGoogle Scholar
  183. Verheyen C, Albrecht A, Herrmann J, Strobl M, Jekle M, Becker T (2015) The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem 173:243–249PubMedCrossRefGoogle Scholar
  184. Verma VV, Gupta R, Goel M (2015) Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies. Biol Direct 10:49PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wang Z (2014) Whitening cosmetic and preparation method thereof. China Patent Application CN104027293 (A)Google Scholar
  186. Wang Z, Tan T, Song J (2007) Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Bioresour Technol 42:108–111CrossRefGoogle Scholar
  187. Wang B, Liang G, Zhou Q, Xie J, Mo Y (2010) Combined amino acids modulation with H2O2 stress for glutathione overproduction in Candida utilis. Afr J Biotechnol 9:5399–5406Google Scholar
  188. Wang M, Sun J, Xue F, Shang F, Wang Z, Tan T (2012) The effect of intracellular amino acids on GSH production by high-cell density cultivation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 168:198–205PubMedCrossRefGoogle Scholar
  189. Wang C, Zhang J, Wu H, Li Z, Ye Q (2015) Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production. J Biotechnol 214:63–68PubMedCrossRefGoogle Scholar
  190. Wang D, Wang C, Wu H, Li Z, Ye Q (2016) Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol 43:45–53PubMedCrossRefGoogle Scholar
  191. Wang YR, Branicky N, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928PubMedPubMedCentralCrossRefGoogle Scholar
  192. Watanabe F, Hashizume E, Chan GP, Kamimura A (2014) Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: a double-blind and placebo-controlled clinical trial in healthy women. Clin Cosmet Investig Dermatol:267Google Scholar
  193. Wen S, Zhang T, Tan T (2004) Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzym Microb Technol 35(6–7):501–507CrossRefGoogle Scholar
  194. Wen S, Zhang T, Tan T (2006) Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochem 41:2424–2428CrossRefGoogle Scholar
  195. Wen J, Du Y, Li D, Alany R (2013) Development of water-in-oil microemulsions with the potential of prolonged release for oral delivery of L-glutathione. Pharm Dev Technol 18:1424–1429PubMedCrossRefGoogle Scholar
  196. Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P (2017) Glutathione and its antiaging and antimelanogenic effects. Clin Cosmet Investig Dermatol 10:147–153PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wheeler GL, Trotter EW, Dawes IW, Grant CM (2003) Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem 278:49920–49928PubMedCrossRefGoogle Scholar
  198. Wickham S, West MB, Cook PF, Hanigan MH (2011) Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem 414:208–214PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wiles AM, Cai H, Naider F, Becker JM (2006) Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology 152:3133–3145PubMedCrossRefGoogle Scholar
  200. Witschi A, Reddy S, Stofer B, Lauterburg BH (1992) The systemic availability of oral glutathione. Eur J Clin Pharmacol 43:667–669PubMedCrossRefGoogle Scholar
  201. Wu G, Fang Y, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. Int J Nutr 134:489–492Google Scholar
  202. Xiao Z, La Fontaine S, Bush AI, Wedd AG (2019) Molecular mechanisms of glutaredoxin enzymes: versatile hubs for thiol-disulfide exchange between protein thiols and glutathione. J Mol Biol 431:158–177PubMedCrossRefGoogle Scholar
  203. Xiong Z, Guo M, Guo Y, Chu J, Zhuang Y, Zhang S (2009) Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol. Bioresour Technol 100:1011–1014PubMedCrossRefGoogle Scholar
  204. Xu G, Zhang L, Chen Y, Cheng W, Guo Y, Wei Y, Liang J, Tan W (2015) Saccharomyces cerevisiae microbial preparation with high yield of glutathione and preparation method thereof. China Patent Application CN104286415 (A)Google Scholar
  205. Yamaguchi H, Kato H, Hata Y, Nishioka T, Kimura A, Oda J, Katsube Y (1993) Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 A resolution. J Mol Biol 229:1083–1100PubMedCrossRefGoogle Scholar
  206. Yan N, Meister A (1990) Amino acid sequence of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 265:1588–1593PubMedGoogle Scholar
  207. Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416–7429PubMedPubMedCentralCrossRefGoogle Scholar
  208. Ye C, Liu Y, Wang Y, Li H, Wang K (2016) Glutathione beautifying yogurt and production method thereof. China Patent Application CN105685226 (A)Google Scholar
  209. Yoshida H, Arai S, Hara KY, Yamada R, Ogino C, Fukuda H, Kondo A (2011) Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 89:1417–1422PubMedCrossRefGoogle Scholar
  210. Yu J, Zhou CZ (2007) Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins: Struct Funct Bioinf 68:972–979CrossRefGoogle Scholar
  211. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396PubMedPubMedCentralCrossRefGoogle Scholar
  212. Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J of Microbiol 2011:1–8CrossRefGoogle Scholar
  213. Yurkiv M, Kurylenko O, Vasylyshyn R, Dmytruk K, Fickers P, Sibirny A (2018) Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha. FEMS Yeast Res 18(2)Google Scholar
  214. Zaman GJ, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C, Oude Elferink RP, Baas F, Borst P (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. PNAS USA 92:7690–7694PubMedCrossRefGoogle Scholar
  215. Zarka MH, Bridge WJ (2017) Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol 11:631–636PubMedPubMedCentralCrossRefGoogle Scholar
  216. Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zhang T, Wen S, Tan T (2007) Optimization of the medium for glutathione production in Saccharomyces cerevisiae. Process Biochem 42:454–458CrossRefGoogle Scholar
  218. Zhang J, Quan C, Wang C, Wu H, Li Z, Ye Q (2016) Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Factories 15:38CrossRefGoogle Scholar
  219. Zhang X, Wu H, Huang B, Li Z, Ye Q (2017) One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. J Biotechnol 241:163–169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olena O. Kurylenko
    • 1
  • Kostyantyn V. Dmytruk
    • 1
  • Andriy Sibirny
    • 1
    • 2
  1. 1.Institute of Cell Biology, NAS of UkriaineLvivUkraine
  2. 2.Department of Microbiology and BiotechnologyUniversity of RzeszowRzeszowPoland

Personalised recommendations