Advertisement

Effective Technologies for Isolating Yeast Oxido-Reductases of Analytical Importance

  • Galina Z. Gayda
  • Olha M. Demkiv
  • Halyna M. Klepach
  • Mykhailo V. Gonchar
  • Marina Nisnevitch
Chapter

Abstract

Microbial enzymes have gained interest for their widespread use in industries and medicine due to their stability, catalytic activity, and low-cost production, compared to plant and animal analogues. Microbial enzymes are capable of degrading toxic chemical compounds of industrial and domestic wastes by degradation or via conversion to nontoxic products. Enzyme technology broadly involves production, isolation, purification, and use of enzymes in various industries (e.g., food, medicine, agriculture, chemicals, pharmacology). The development of simple technologies for obtaining highly purified novel enzymes is an actual task for biotechnology and enzymology. This chapter presents a review of the main achievements in the elaboration of modern techniques for obtaining recombinant and novel enzymes. The results of a series of the authors’ investigations into the development of novel enzymatic approaches, including biosensors, for determination of practically important analytes are summarized. The described methods are related to isolation of highly purified yeast oxido-reductases: alcohol oxidase, flavocytochrome b2, glycerol dehydrogenase, and formaldehyde dehydrogenase. The enzymes were isolated from selected or recombinant yeast cells using the simple and effective technologies developed by the authors.

Keywords

Yeasts Oxido-reductases Isolation and purification Analytical application 

References

  1. Ali MB, Gonchar M, Gayda G, Paryzhak S, Maaref MA, Jaffrezic-Renault N, Korpan Y (2007) Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens Bioelectron 22(12):2790–2795PubMedCrossRefPubMedCentralGoogle Scholar
  2. Allais JJ, Louktibi A, Baratti J (1983) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the formaldehyde dehydrogenase. Agric Biol Chem 47(7):1509–1516Google Scholar
  3. Arias CAD, Marques DAV, Malpiedi LP, Maranhão AQ, Parra DAS, Converti A, Junior AP (2017) Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Braz J Microbiol 48(3):419–426PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avalos J, Nordzieke S, Parra O, Pardo-Medina J, Carmen Limon M (2017) Carotenoid Production by Filamentous Fungi and Yeasts. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 225–279CrossRefGoogle Scholar
  5. Baerends RJ, Sulter GJ, Jeffries TW (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42CrossRefGoogle Scholar
  6. Baghban R, Farajnia S, Ghasemi Y, Mortazavi M, Zarghami N, Samadi N (2018) New developments in Pichia pastoris expression system, review and update. Curr Pharm Biotechnol 19(6):451–467PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bao J, Huang M, Petranovic D, Nielsen J (2018) Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express 8:37.  https://doi.org/10.1186/s13568-018-0571-xCrossRefPubMedPubMedCentralGoogle Scholar
  8. Barrero JJ, Casler JC, Valero F, Ferrer P, Glick BS (2018) An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microb Cell Factories 17:161.  https://doi.org/10.1186/s12934-018-1009-5CrossRefGoogle Scholar
  9. Bawa Z, Routledge SJ, Jamshad M, Clare M, Sarkar D, Dickerson I, Ganzlin M, Poyner DR, Bill RM (2014) Functional recombinant protein is present in the pre-induction phases of Pichia pastoris cultures when grown in bioreactors, but not shake-flasks. Microb Cell Factories 13(1):127.  https://doi.org/10.1186/s12934-014-0127-yCrossRefGoogle Scholar
  10. Belda I, Ruiz J, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Benito S, Santos A (2017) Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release inwine sequential fermentations. Int J Food Microbiol 257:183–191PubMedCrossRefGoogle Scholar
  11. Berg L, Strand TA, Valla S, Brautaset T (2013) Combinatorial mutagenesis and selection to understand and improve yeast promoters. Biomed Res Int 2013:Article ID 926985, 9 pages.  https://doi.org/10.1155/2013/926985CrossRefGoogle Scholar
  12. Białkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32(12):200.  https://doi.org/10.1007/s11274-016-2161-xCrossRefPubMedGoogle Scholar
  13. Bollella P, Sharma S, Cass AEG, Antiochia R (2019) Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron 123:152–159PubMedCrossRefGoogle Scholar
  14. Boteva R, Visser AJ, Filippi B, Vriend G, Veenhuis M, van der Klei IJ (1999) Conformational transitions accompanying oligomerization of yeast alcohol oxidase, a peroxisomal flavoenzyme. Biochemistry 38(16):5034–5044PubMedCrossRefGoogle Scholar
  15. Bredell H, Smith JJ, Prins WA, Görgens JF, van Zyl WH (2016) Expression of rotavirus VP6 protein: a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Research 16 (2) fow001,  https://doi.org/10.1093/femsyr/fow001PubMedCrossRefGoogle Scholar
  16. Bringer S, Sprey B, Sahm H (1979) Purification and properties of alcohol oxidase from Poria contigua. Eur J Biochem 101(2):563–570PubMedCrossRefGoogle Scholar
  17. Buckholz RG, Gleeson MA (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (NY) 9(11):1067–1072CrossRefGoogle Scholar
  18. Chang CH, Hsiung HA, Hong KL, Huang CT (2018) Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol 18(1):81.  https://doi.org/10.1186/s12896-018-0492-4CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8(238):1–26Google Scholar
  20. Chen B, Lee HL, Heng YC, Chua N, Teo WS, Choi WJ, Leong SSJ, Foo JL, Chang MW (2018) Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 36(7):1870–1881PubMedCrossRefGoogle Scholar
  21. Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146.  https://doi.org/10.1186/s13068-015-0336-6CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5(12):3376–3385PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9(3):1316–1323PubMedPubMedCentralCrossRefGoogle Scholar
  24. Curvers S, Brixius P, Klauser T, Thömmes J, Weuster-Botz D, Takors R, Wandrey C (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17(3):495–502PubMedCrossRefGoogle Scholar
  25. Dagar K, Pundir CS (2018) Dataset on fabrication of an improved L-lactate biosensor based on lactate oxidase/cMWCNT/CuNPs/PANI modified PG electrode. Data Brief 17:1163–1167PubMedPubMedCentralCrossRefGoogle Scholar
  26. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production: review. J Mol Recognit 18(2):119–138PubMedCrossRefGoogle Scholar
  27. Demkiv OM, SYa P, Krasovs’ka OS, Stasyk OV, Gayda GZ, Sibirny AA, Gonchar MV (2005) Construction of methylotrophic yeast Hansenula polymorpha strains over-producing formaldehyde dehydrogenase. Biopolymers and Cell 21(6):525–530. (in Ukrainian)CrossRefGoogle Scholar
  28. Demkiv OM, Paryzhak SY, Gayda GZ, Sibirny VA, Gonchar МV (2007) Formaldehyde dehydrogenase from the recombinant yeast Hansenula polymorpha: іsolation and bioanalytic application. FEMS Yeast Res 7:1153–1159PubMedCrossRefGoogle Scholar
  29. Demkiv O, Smutok O, Paryzhak S, Gayda G, Sultanov Y, Guschin D, Shkil H, Schuhmann W, Gonchar M (2008) Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta 76(4):837–846PubMedCrossRefGoogle Scholar
  30. Demkiv OM, Paryzhak SY, Ishchuk OP, Gayda GZ, Gonchar MV (2011) Activities of the enzymes of formaldehyde catabolism in recombinant strains of Hansenula polymorpha. Mirobiology 80(3):307–313CrossRefGoogle Scholar
  31. Dijkman WP, de Gonzalo G, Mattevi A, Fraaije MW (2013) Flavoprotein oxidases: classification and applications: review. Appl Microbiol Biotechnol 97(12):5177–5188PubMedCrossRefGoogle Scholar
  32. Dmytruk KV, Smutok OV, Ryabova OB, Gayda GZ, Sibirny VA, Schuhmann W, Gonchar MV, Sibirny AA (2007) Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor. BMC Biotechnol 7(7):1–7Google Scholar
  33. Dmytruk KV, Kurylenko OO, Ruchala J, Abbas CA, Sibirny AA (2017) Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 1–38Google Scholar
  34. Domínguez A, Fermiñán E, Sánchez M, González FJ, Pérez-Campo FM, García S, Herrero AB, San Vicente A, Cabello J, Prado M, Iglesias FJ, Choupina A, Burguillo FJ, Fernández-Lago L, López MC (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1(2):131–142Google Scholar
  35. Eggeling L, Sahm H (1980) Direct enzymatic assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in colonies of Hansenula polymorpha. Appl Environ Microbiol 39(1):268–269PubMedPubMedCentralGoogle Scholar
  36. Ekas H, Deaner M, Alper HS (2019) Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Chem Biol 57:1–9CrossRefGoogle Scholar
  37. Engleder M, Horvat M, Emmerstorfer-Augustin A, Wriessnegger T, Gabriel S, Strohmeier G, Weber H, Müller M, Kaluzna I, Mink D, Schürmann M, Pichler H (2018) Recombinant expression, purification and biochemical characterization of kievitone hydratase from Nectria haematococca. PLoS One 13(2):e0192653.  https://doi.org/10.1371/journal.pone.0192653CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fernandes FJ, López-Estepa M, Querol-García J, Vega MC (2016) Production of protein complexes in non-methylotrophic and methylotrophic Yeasts: nonmethylotrophic and methylotrophic Yeasts. Adv Exp Med Biol 896:137–153Google Scholar
  39. Fletcher E, Krivoruchko A, Nielsen J (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113(6):1164–1170PubMedCrossRefGoogle Scholar
  40. Gadda G (2008) Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases: review. Biochemist 47(52):13745–13753CrossRefGoogle Scholar
  41. Gaida GZ, Stel'mashchuk SY, Smutok OV, Gonchar MV (2003) A new method of visualization of the enzymatic activity of flavocytochrome b2 in electrophoretograms. Appl Biochem Microbiol 39(2):221–223CrossRefGoogle Scholar
  42. Gartner G, Kopperschlager G (1984) Purification and Properties of Glycerol Dehydrogenase from Candida valida. Microbiology 130: 3225–3233CrossRefGoogle Scholar
  43. Gayda G, Demkiv O, Gonchar M, Paryzhak S, Schuhmann W (2008a) Recombinant formaldehyde dehydrogenase and gene-engineered methylotrophic yeasts as bioanalitycal instruments for assay of toxic formaldehyde. In: Evangelista V et al (eds) Algal toxins: nature, occurrence, effect and detection, NATO science for peace and security series A: Chemistry and biology. Springer, Dordrecht, pp 311–333CrossRefGoogle Scholar
  44. Gayda G, Paryzhak S, Demkiv O, Ksheminska H, Gonchar M (2008b) Formaldehyde reductase from formaldehyde-resistant gene-engineered methylotrophic yeast Hansenula polymorpha: isolation and characterization: 12th International Congress on Yeast, Kyiv, Ukraine. August 11–15, p 304Google Scholar
  45. Gayda G, Pavlishko H, Stasyuk N, Ivash M, Bilek M, Broda D, Gonchar M (2013a) Application of recombinant glycerol dehydrogenase for glycerol assay in wines. 5 th Polish-Ukrainian Weigl conference on Microbiology. Chernivtsi, Ukraine May 23–25, p 72Google Scholar
  46. Gayda G, Stasyuk N, Demkiv O, Klepach H, Broda D, Sibirny A, Gonchar M (2013b) New enzymatic methods for wine assay. International conference Biocatalysis-2013: fundamentals and applications. Moscow, Russia, July 2–5, pp 71–72Google Scholar
  47. Gayda G, Demkiv O, Klepach H, Gonchar M, Levy-Halaf R, Wolf D, Nisnevitch M (2015) Formaldehyde: detection and biodegradation (Chapter 6). In: Patton A (ed) Formaldehyde: synthesis, applications and potential health effects. Nova Science Publishers, Inc., New York, pp 117–142. ISBN: 978-1-63482-412-5Google Scholar
  48. Gayda GZ, Demkiv OM, Stasyuk NYe, Serkiz RYa, Lootsik MD, Errachid A, Gonchar MV, Nisnevitch M (2019) Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci 9:720.  https://doi.org/10.3390/app9040720CrossRefGoogle Scholar
  49. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica – a comparison. EMS Yeast Res 5(11):1079–1096CrossRefGoogle Scholar
  50. Gerpen JV (2005) Biodiesel processing and production. Fuel Proces Technol 86 (10): 1097–1107CrossRefGoogle Scholar
  51. Gonchar MV, Ksheminska GP, Hladarevska NM, Sibirny AA (1990) Catalase-minus mutants of methylotrophic yeast Hansenula polymorpha impaired in regulation of alcohol oxidase synthesis. In: Lachowicz TM (Ed) Genetics of Respiratory Enzymes in Yeasts. Wroclaw University Press, Wroclaw, Poland, pp. 222–228Google Scholar
  52. Gonchar MV, Maidan MM, Pavlishko HM, Sibirny AA (2001) A New Oxidase-Peroxidase Kit for Ethanol Assays in Alcoholic Beverages. Food technol. Biotechnol 39(1):37–42Google Scholar
  53. Gonchar M, Maidan M, Korpan Y, Sibirny V, Kotylak Z, Sibirny A (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307–314PubMedCrossRefGoogle Scholar
  54. Gonchar M, Smutok O, Os’mak H (2009) Flavocytochrome b2-based enzymatic composition, method and kit for L-lactate. Patent Application PCT/US2008/069637 Publ.WO/2009/009656: http://www.wipo.int/pctdb/en/wo.jsp?WO=2009009656
  55. Gonchar M, Smutok O, Karkovska M, Stasyuk N, Gayda G (2017) Yeast-based biosensors for clinical diagnostics and food control. In: "Biotechnology of Yeasts and Filamentous Fungi" (Ed. A.A. Sibirny). Springer, P. 392–400Google Scholar
  56. Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS (2017) Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 10(2):264–278PubMedPubMedCentralCrossRefGoogle Scholar
  57. Goriushkina TB, Orlova AP, Smutok OV, Gonchar MV, Soldatkin AP, Dzyadevych SV (2009) Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L -lactate determination. Biopolymers and Cell 25(3):194–202CrossRefGoogle Scholar
  58. Goriushkina TB, Shkotova LV, Gayda GZ, Klepach HM, Gonchar MV, Soldatkin AP, Dziyadevych SV (2010) Amperometric biosensor based on glycerol oxidase for glycerol determination. Sensor Actuat B Chem 144:361–367CrossRefGoogle Scholar
  59. Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications: review. Appl Microbiol Biotechnol 97(10):4259–4275PubMedCrossRefGoogle Scholar
  60. Grewal N, Parveen Z, Large A, Perry C, Connock M (2000) Gastropod mollusc aliphatic alcohol oxidase: subcellular localisation and properties. Comp Biochem Physiol B: Biochem Mol Biol 125(4):543–554CrossRefGoogle Scholar
  61. Griesemer M, Young C, Robinson AS, Petzold L (2014) BiP clustering facilitates protein folding in the endoplasmic reticulum. PLoS Comput Biol 10(7):e1003675.  https://doi.org/10.1371/journal.pcbi.1003675CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ (2004) Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 15(3):1347–1355PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gvozdev AR, Tukhvatullin IA, Gvozdev RI (2012) Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases: review. Biochem Mosc 77(8):843–856CrossRefGoogle Scholar
  64. Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5(39):1–21Google Scholar
  65. Hemmerich J, Adelantado N, Barrigón JM, Ponte X, Hörmann A, Ferrer P, Kensy F, Valero F (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Factories 13(1):36.  https://doi.org/10.1186/1475-2859-13-36CrossRefGoogle Scholar
  66. Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation: review. Appl Microbiol Biotechnol 93(4):1395–1410PubMedCrossRefGoogle Scholar
  67. Pharmaion. India Industrial Enzymes Market Forecast and Opportunities, 2020 http://www.pharmaion.com/report/india-industrial-enzymes-market-forecast-and-opportunities-2020/10.html. Accessed on 19 Feb 2019
  68. Huang M, Wang G, Qin J, Petranovic D, Nielsen J (2018a) Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 115(47):E11025–E11032PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huang M, Joensson HN, Nielsen J (2018b) High-throughput microfluidics for the screening of yeast libraries. Methods Mol Biol 1671:307–317PubMedCrossRefGoogle Scholar
  70. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417PubMedCrossRefGoogle Scholar
  71. Isobe K, Takahashi T, Ogawa J, Kataoka M, Shimizu S (2009) Production and characterization of alcohol oxidase from Penicillium purpurescens AIU 063. J Biosci Bioeng 107(2):108–112PubMedCrossRefGoogle Scholar
  72. Janssen FW, Ruelius HW (1968) Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim Biophys Acta 151(2):330–342PubMedCrossRefGoogle Scholar
  73. Jullessen D, David F, Pfleger B, Nielsen J (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395–1402CrossRefGoogle Scholar
  74. Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem 19(1):7–21PubMedCrossRefGoogle Scholar
  75. Karkovska M, Smutok O, Stasyuk N, Gonchar M (2015) L-lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches. Talanta 144:1195–1200PubMedCrossRefGoogle Scholar
  76. Karkovska МІ, Stasyuk NYe, Gayda GZ, Smutok OV, Gonchar MV (2017) Nanomaterials in construction of biosensors of biomedical purposes. In: Stoika R (Ed) Multifunctional nanomaterials for biology and medicine: molecular design, synthesis, and application. pp. 165–177 (in Ukrainian)Google Scholar
  77. Kato N (1990) Formaldehyde dehydrogenase from methylotrophic yeasts. Methods Enzymol 188:455–459Google Scholar
  78. Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15(1):1–16PubMedCrossRefGoogle Scholar
  79. Kim JW, Kim J, Seo SO, Kim KH, Jin YS, Seo JH (2016) Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechno Biofuels 9:265.  https://doi.org/10.1186/s13068-016-0677-9CrossRefGoogle Scholar
  80. Koch C, Neumann P, Valerius O, Feussner I, Ficner R (2016) Crystal structure of alcohol oxidase from Pichia pastoris. PLoS One 11(2):e0149846.  https://doi.org/10.1371/journal.pone.0149846. eCollectionCrossRefPubMedPubMedCentralGoogle Scholar
  81. Kondo T, Morikawa Y, Hayashi N (2008) Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus. Appl Microbiol Biotechnol 77(5):995–1002PubMedCrossRefGoogle Scholar
  82. Krasovska OS, Babiak LIa Nazarko TY, Stasyk OG, Danysh TV, Gayda GZ, Stasyk OV, Gonchar MV, Sybirny АА (2006) Construction of yeast Hansenula polymorpha overproducing amine oxidase as bioselective element of sensors for biogenic amines. In: El’skaya AV, Pokhodenko VD (eds) Investigations on sensor systems and technologies, vol 1. IMBG of NAS of Ukraine, Kyiv, pp 141–148Google Scholar
  83. Krasovska OS, Stasyk OG, Nahorny VO, Stasyk OV, Granovski N, Kordium VA, Vozianov OF, Sibirny AA (2007) Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotechnol Bioeng 97(4):858–870PubMedCrossRefGoogle Scholar
  84. Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276PubMedCrossRefGoogle Scholar
  85. Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36(1):150–167PubMedCrossRefGoogle Scholar
  86. Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ (2008) The growing VAO flavoprotein family: review. Arch Biochem Biophys 474(2):292–301PubMedCrossRefGoogle Scholar
  87. Li M, Li M, Wu J, Liu X, Lin J, Wei D, Chen H (2010). Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresour Technol 101 (21): 8294-8299PubMedCrossRefPubMedCentralGoogle Scholar
  88. Liu W-C, Zhu P (2018) Demonstration-scale high-cell-density fermentation of Pichia pastoris. Recombinant Glycoprotein Production – 2018 Methods and Protocols Part of the Methods in Molecular Biology book series. MIMB 1674:109–116Google Scholar
  89. Liu C, Yang X, Yao Y, Huang W, Sun W, Ma Y (2014) Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha. Biotechnol Lett 36(5):937–945PubMedCrossRefGoogle Scholar
  90. Liu J, Wu S, Li Z (2018) Recent advances in enzymatic oxidation of alcohols: review. Curr Opin Chem Biol 43:77–86PubMedCrossRefGoogle Scholar
  91. Löbs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth Syst Biotechnol 2(3):198–207PubMedPubMedCentralCrossRefGoogle Scholar
  92. Love KR, Dalvie NC, Love JC (2018) The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 53:50–58PubMedCrossRefGoogle Scholar
  93. Lusta KA, Leonovitch OA, Tolstorukov II, Rabinovich YM (2000) Constitutive biosynthesis and localization of alcohol oxidase in the ethanol-insensitive catabolite repression mutant ecr1 of the yeast Pichia methanolica. Biochem Mosc 65(5):604–608Google Scholar
  94. Lv M, Liu Y, Geng J, Kou X, Xin Z, Yang D (2018) Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron 106:122–128PubMedCrossRefGoogle Scholar
  95. Mack M, Wannemacher M, Hobl B, Pietschmann P, Hock B (2009) Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expr Purif 66(2):165–171PubMedCrossRefGoogle Scholar
  96. Mahadevan A, Fernando S (2016) An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode. Biosens Bioelectron 92:417–424PubMedCrossRefGoogle Scholar
  97. Mallinder P, Pritchard A, Moir A (1992) Cloning and characterization of a gene from Bacillus stearothermophilus var. non-diastaticus encoding a glycerol dehydrogenase. Gene 110 (1): 9–16PubMedCrossRefGoogle Scholar
  98. Mangkorn N, Kanokratana P, Roongsawang N, Laobuthee A, Laosiripojana N, Champreda V (2019) Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles. J Biosci Bioeng 127(3):265–272PubMedCrossRefGoogle Scholar
  99. Mattanovich D, Sauer M, Gasser B (2014) Yeast biotechnology: teaching the old dog new tricks. Microb Cell Factories 13(1):34.  https://doi.org/10.1186/1475-2859-13-34CrossRefGoogle Scholar
  100. Mincey T, Tayrien G, Mildvan AS, Abeles RH (1980) Presence of a flavin semiquinone in methanol oxidase. Proc Natl Acad Sci U S A 77(12):7099–7101PubMedPubMedCentralCrossRefGoogle Scholar
  101. Müller S, Sandal T, Kamp-Hansen P, Dalbøge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14(14):1267–1283PubMedCrossRefGoogle Scholar
  102. Nakamura Y, Nishi T, Noguchi R, Ito Y, Watanabe T, Nishiyama T, Aikawa S, Hasunuma T, Ishii J, Okubo Y, Kondo A (2018) A stable, autonomously replicating plasmid vector containing Pichia pastoris Centromeric DNA. Appl Environ Microbiol 84(15):e02882–e02817.  https://doi.org/10.1128/AEM.02882-17CrossRefPubMedPubMedCentralGoogle Scholar
  103. Nguyen H, Nevoigt E (2009) Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept. Metab Eng 11: 335–346PubMedCrossRefGoogle Scholar
  104. Nguyen QT, Romero E, Dijkman WP, de Vasconcellos SP, Binda C, Mattevi A, Fraaije MW (2018) Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochemistry 57(43):6209–6218PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nieuwoudt HH, Prior BA, Pretorius S, Bauer FF (2002) Glycerol in South African table wines: an assessment of its relationship to wine quality. Afr J Enol Vitic 23(1):22–30Google Scholar
  106. Nikitina O, Shleev S, Gayda G, Demkiv O, Gonchar M, Gorton L, Csöregi E, Nistor M (2007) Bi-enzyme biosensor based on NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay. Sensors Actuators B 125:1–9CrossRefGoogle Scholar
  107. Nikolelis DP, Nikoleli GP (2016) Biosensors for security and bioterrorism applications. Springer Int Publi, Switzerland ISBN 978-3-319-28926-7Google Scholar
  108. Nora LC, Westmann CA, Martins-Santana L, Alves LF, Monteiro LMO, Guazzaroni ME, Silva-Rocha R (2019) The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 12(1):125–147PubMedCrossRefGoogle Scholar
  109. Oh BR, Lee SM, Heo SY, Seo JW, Kim CH (2018) Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microb Cell Factories 17(1):92.  https://doi.org/10.1186/s12934-018-0921-zCrossRefGoogle Scholar
  110. Owczarek B, Gerszberg A, Hnatuszko-Konka K (2019) A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. Biomed Res Int 2019:4216060. doi: 10.1155/2019/4216060. eCollection 2019CrossRefGoogle Scholar
  111. Ozimek P, Veenhuis M, van der Klei IJ (2005) Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res 5(11):975–983PubMedCrossRefGoogle Scholar
  112. Panadare D, Rathod KV (2018) Extraction and purification of polyphenol oxidase: a review. Biocatal Agric Biotechnol 14:431–437CrossRefGoogle Scholar
  113. Passoth V (2017) Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 149–204CrossRefGoogle Scholar
  114. Patel RN, Hou CN, Derelanko P (1983) Microbial oxidation of methanol: purification and properties of formaldehyde dehydrogenase from a Pichia sp. NRRL-Y-11328. Arch Biochem Biophys 221(1):135–142PubMedCrossRefGoogle Scholar
  115. Pavlishko HM, Ryabinina OV, Zhilyakova TA, Sakharov IYu, Gerzhikova VG, Gonchar MV (2005) Oxidase-peroxidase method of ethanol assay in fermented musts and wine products. Appl Biochem Microbiol 41 (6): 604–609CrossRefGoogle Scholar
  116. Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15PubMedCrossRefGoogle Scholar
  117. Pickl M, Fuchs M, Glueck SM, Faber K (2015) The substrate tolerance of alcohol oxidases: review. Appl Microbiol Biotechnol 99(16):6617–6642PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pobre KFR, Poet GJ, Hendershot LM (2018) The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem 294(6):2098–2108PubMedPubMedCentralCrossRefGoogle Scholar
  119. Porro D, Branduardi P (2017) Production of Organic Acids by Yeasts and Filamentous Fungi. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 205–223CrossRefGoogle Scholar
  120. Portela RMC, Vogl T, Ebner K, Oliveira R, Glieder A (2018) Pichia pastoris alcohol oxidase 1 (AOX1) core promoter engineering by high resolution systematic mutagenesis. Biotechnol J 13(3):e1700340.  https://doi.org/10.1002/biot.201700340CrossRefGoogle Scholar
  121. Rahman MS, Xu CC, Ma K, Nanda M, Qin W (2017) High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int J Biol Sci 13(3):308–318PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rajamanickam V, Metzger K, Schmid C, Spadiut O (2017) A novel bi-directional promoter system allows tunable recombinant protein production in Pichia pastoris. Microb Cell Factories 16:152.  https://doi.org/10.1186/s12934-017-0768-8CrossRefGoogle Scholar
  123. Rankine BC, Bridson DA (1974) Glycerol in australian wines and factors influencing its formation. http://www.ajevonline.org/content/ajev/22/1/6.full.pdf
  124. Rassaei L, Olthuis W, Tsujimura S, Sudhölter EJ, van den Berg A (2014) Lactate biosensors: current status and outlook. Anal Bioanal Chem 406(1):123–137PubMedCrossRefGoogle Scholar
  125. Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 11(5):35–54Google Scholar
  126. Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Karthika Bahuleyan A, Aneesh EM, Pandey A (2018) Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett 365(21).  https://doi.org/10.1093/femsle/fny222
  127. Reiser J, Glumoff V, Kälin M, Ochsner U (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 43:75–102PubMedGoogle Scholar
  128. Remize F, Cambon B, Barnavon L, Dequin S (2003) Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 20: 1243–1253PubMedCrossRefGoogle Scholar
  129. Reyes De Corcuera JI, Powers JR (2017) Application of Enzymes in Food Analysis. In: Food Analysis, Nielsen, S.S. Editor, Springer, pp.469–486Google Scholar
  130. Romero E, Gadda G (2014) Alcohol oxidation by flavoenzymes: review. Biomol Concepts 5(4):299–318PubMedCrossRefGoogle Scholar
  131. Rosati G, Gherardi G, Grigoletto D, Marcolin G, Cancellara P, Mammucari C, Scaramuzza M, Toni AD, Reggiani C, Rizzuto R, Paccagnella A (2018) Lactate Dehydrogenase and Glutamate Pyruvate Transaminase biosensing strategies for lactate detection on screen-printed sensors. Catalysis efficiency and interference analysis in complex matrices: from cell cultures to sport medicine. Sensing and Bio-Sensing Research 21: 54–64CrossRefGoogle Scholar
  132. Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A (2016) Functional inclusion bodies produced in the yeast Pichia pastoris Microbial Cell Factories 15:166  https://doi.org/10.1186/s12934-016-0565-9
  133. Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW (2001) Glycerol Dehydrogenase. Structure 9 (9): 789–802PubMedCrossRefGoogle Scholar
  134. Sagiroglu A, Altay V (2006) Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha. Prep Biochem Biotechnol 36(4):321–332PubMedCrossRefGoogle Scholar
  135. Sahm H, Wagner F (1973) Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii. Eur J Biochem 36(1):250–256PubMedCrossRefGoogle Scholar
  136. Semkiv M, Dmytruk K, Abbas C (2017) Biotechnology of Glycerol Production and Conversion in Yeasts. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham 8 pp117–148CrossRefGoogle Scholar
  137. Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R (2017) Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnol 17(1):55.  https://doi.org/10.1186/s12896-017-0361-6
  138. Sharma S, Saeed A, Johnson C, Gadegaard N, Cass AE (2017) Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens Bio-Sens Res 13:104–108CrossRefGoogle Scholar
  139. Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Factories 15(1):178.  https://doi.org/10.1186/s12934-016-0578-4CrossRefGoogle Scholar
  140. Shkotova LV, Soldatkin AP, Gonchar MV, Schuhmann W, Dzyadevych SV (2006) Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater Sci Eng C 26:411–414CrossRefGoogle Scholar
  141. Shleev SV, Shumakovich GP, Nikitina OV, Morozova OV, Pavlishko HM, Gayda GZ, Gonchar MV (2006) Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochem Mosc 71(3):245–250CrossRefGoogle Scholar
  142. Sibirny AA (Ed) (2017) Book: Biotechnology of yeasts and filamentous fungi. Springer, ISBN 978-3-319-58829-2Google Scholar
  143. Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP (1988) Genetic control of methanol utilization in yeasts. J Basic Microbiol 28(5):293–319PubMedCrossRefGoogle Scholar
  144. Sibirny V, Demkiv O, Klepach H, Honchar T, Gonchar M (2011a) Alcohol oxidase- and formaldehyde dehydrogenase-based enzymatic methods for formaldehyde assay in fish food products. Food Chem 127:774–779PubMedCrossRefGoogle Scholar
  145. Sibirny V, Demkiv O, Sigawi S, Paryzhak S, Klepach H, Korpan Y, Smutok O, Nisnevich M, Gayda G, Nitzan Y, Puchalski C, Gonchar M (2011b) Formaldehyde oxidizing enzymes and genetically modified yeast Hansenula polymorpha cells in monitoring and removal of formaldehyde. In: Einschlag FSG (Ed) Waste Water – Evaluation and Management. ISBN 978-953-307-233-3. InTech (Croatia) (6):115-154Google Scholar
  146. Sigawi S, Smutok O, Demkiv O, Zakalska O, Gayda G, Nitzan Y, Nisnevitch M, Gonchar M (2011) Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde. J Biotechnol 153:138–144PubMedCrossRefGoogle Scholar
  147. Sigawi S, Smutok O, Demkiv O, Gayda G, Vus B, Nitzan Y, Gonchar M, Nisnevitch M (2014) Detection of waterborne and airborne formaldehyde: from amperometric chemosensing to a visual biosensor based on alcohol oxidase. Materials 7: 1055–1068PubMedPubMedCentralCrossRefGoogle Scholar
  148. Singh R, Kumar M, Mitta A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century: review. 3 Biotech 6:174.  https://doi.org/10.1007/s13205-016-0485-8
  149. Smith JJ, Burke A, Bredell H, van Zyl WH, Görgens JF (2012) Comparing cytosolic expression to peroxisomal targeting of the chimeric L1/L2 (ChiΔH-L2) gene from human papillomavirus type 16 in the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Yeast 29(9):385–393PubMedCrossRefGoogle Scholar
  150. Smutok O, Gayda G, Gonchar M, Schuhmann W (2005) A novel L-lactate-selective biosensor based on the use of flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha. Biosens Bioelectron 20:1285–1290PubMedCrossRefGoogle Scholar
  151. Smutok O, Gayda G, Shuhmann W, Gonchar M (2006a) Development of L-lactate-selective biosensors based on thermostable yeast L-lactate: cytochrome c-oxidoreductase. In: El’skaya AV, Pokhodenko VD (eds) Investigations on sensor systems and technologies. IMBG of NAS of Ukraine, Kyiv, pp 39–45Google Scholar
  152. Smutok O, Ngounou B, Pavlishko H, Gayda G, Gonchar M, Schuhmann W (2006b) A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sensors Actuators B Chem 113(2):590–598CrossRefGoogle Scholar
  153. Smutok OV, Os’mak GS, Gaida GZ, Gonchar MV (2006c) Screening of yeasts producing stable L-lactate cytochrome c oxidoreductase and study of the regulation of enzyme synthesis. Microbiology (Moscow) 75(1):20–24CrossRefGoogle Scholar
  154. Smutok O, Gayda G, Dmytruk K, Klepach H, Nisnevitch M, Sibirny A, Puchalski C, Broda D, Schuhmann W, Gonchar M, Sibirny V (2011) Amperometric biosensors for Lactate, Alcohols, and Glycerol assays in clinical diagnostics. Chapter 20. Іn: Serra PA (Ed) Biosensors – emerging materials and applications. ISBN 978-953-307-328-6. InTech (Croatia) pp 401–446Google Scholar
  155. Smutok O, Karkovska M, Smutok H, Gonchar M (2013) Flavocytochrome b2-based enzymatic method of L-lactate assay in food products. The Scientific World Journal 2013: Article ID 461284, 6 pages.  https://doi.org/10.1155/2013/461284CrossRefGoogle Scholar
  156. Smutok O, Karkovska M, Serkiz Ya, Vus B, Čenas N, Gonchar M (2017) A Novel Mediatorless Biosensor Based On Flavocytochrome b2 Immobilized Onto Gold Nanoclusters For Non-invasive L-lactate Analysis Of Human Liquids. Sensor & Actuators B 250: 469–475Google Scholar
  157. Song H, Li Y, Fang W, Geng Y, Wang X, Wang M, Qiu B (2003) Development of a set of expression vectors in Hansenula polymorpha. Biotechnol Lett 25(23):1999–2006PubMedCrossRefGoogle Scholar
  158. Sperry AE, Sen SE (2001) Farnesol oxidation in insects: evidence that the biosynthesis of insect juvenile hormone is mediated by a specific alcohol oxidase. Insect Biochem Mol Biol 31(2):171–178PubMedCrossRefGoogle Scholar
  159. Stasyk O (2017) Methylotrophic yeasts as producers of recombinant proteins. In: Sibirny AA (Ed) Biotechnology of yeasts and filamentous fungi. ISBN 978-3-319-58829-2. Springer, pp 325–350.  https://doi.org/10.1007/978-3-319-58829-2Google Scholar
  160. Stasyuk N, Gaida G, Gonchar M (2013) L-arginine assay with the use of arginase I. Applied Biochemistry and Microbiology (Moscow) 49(5):529–534CrossRefGoogle Scholar
  161. Stasyuk N, Gayda G, Zakalskiy A, Zakalska O, Serkiz R, Gonchar M (2019) Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chemistry 285: 213–220PubMedCrossRefGoogle Scholar
  162. Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A (2016) Refined Pichia pastoris reference genome sequence. J Biotechnol 235:121–131PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sudbery PE (1996) The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7(5):517–524PubMedCrossRefGoogle Scholar
  164. Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D (2018) Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 102(6):2477–2492PubMedPubMedCentralCrossRefGoogle Scholar
  165. Synenka M, Gayda G, Klepach H, Ivash M, Gonchar M (2015) Isolation and characterization of recombinant yeast glyceroldehydrogenase. ScienceRise 8(13):7–11. (In Ukrainian).  https://doi.org/10.15587/2313-8416.2015.48369CrossRefGoogle Scholar
  166. Talebian-Kiakalaieh A, Amin NAS, Najaafi N, Tarighi S (2018) A review on the catalytic acetalization of bio-renewable glycerol to fuel additives. Front Chem 6(573).  https://doi.org/10.3389/fchem.2018.00573
  167. Talebkhan Y, Samadi T, Samie A, Barkhordari F, Azizi M, Khalaj V, Mirabzadeh E (2016) Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol 8(1):21–28PubMedPubMedCentralGoogle Scholar
  168. Theron CW, Berrios J, Delvigne F, Fickers P (2018) Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol 102(1):63–80CrossRefGoogle Scholar
  169. Thomas AS, Krikken AM, de Boer R, Williams C (2018) Hansenula polymorpha Aat2p is targeted to peroxisomes via a novel Pex20p-dependent pathway. FEBS Lett 592(14):2466–2475PubMedPubMedCentralCrossRefGoogle Scholar
  170. Thömmes J, Halfar M, Gieren H, Curvers S, Takors R, Brunschier R, Kula MR (2001) Human chymotrypsinogen B production from Pichia pastoris by integrated development of fermentation and downstream processing. Part 2. Protein recovery. Biotechnol Prog 17(3):503–512PubMedCrossRefGoogle Scholar
  171. van Berkel WJH (2018) Special issue: Flavoenzymes (Editorial). Molecules 23(8):1957.  https://doi.org/10.3390/molecules23081957CrossRefPubMedCentralPubMedGoogle Scholar
  172. van der Klei IJ, Harder W, Veenhuis M (1991) Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7(3):195–209PubMedCrossRefGoogle Scholar
  173. Vandermies M, Fickers P (2019) Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms  7(2) h pii: E40. doi: 10.3390/microorganisms7020040PubMedCentralCrossRefPubMedGoogle Scholar
  174. Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):E38.  https://doi.org/10.3390/microorganisms6020038PubMedPubMedCentralCrossRefGoogle Scholar
  175. Vogl T, Gebbie L, Palfreyman RW, Speight R (2018) Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris. Appl Environ Microbiol 84(6):e02712–e02717.  https://doi.org/10.1128/AEM.02712-17CrossRefPubMedPubMedCentralGoogle Scholar
  176. Vonck J, Parcej DN, Mills DJ (2016) Structure of alcohol oxidase from Pichia pastoris by cryo-electron microscopy. PLoS One 11(7):e0159476.  https://doi.org/10.1371/journal.pone.0159476CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136PubMedCrossRefGoogle Scholar
  178. Walker RSK, Pretorius IS (2018) Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes (Basel) 9(7):e340.  https://doi.org/10.3390/genes9070340CrossRefGoogle Scholar
  179. Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149PubMedCrossRefGoogle Scholar
  180. Wongnate T, Chaiyen P (2013) The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily: review. FEBS J 280(13):3009–3027PubMedCrossRefGoogle Scholar
  181. Xiao Y, Zhao P, Du J, Li X, Lu W, Hao X, Dong B, Yu Y, Wang L (2018) High-level expression and immunogenicity of porcine circovirus type 2b capsid protein without nuclear localization signal expressed in Hansenula polymorpha. Biologicals 51:18–24PubMedCrossRefGoogle Scholar
  182. Xu P (2018) Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 53:12–19PubMedCrossRefGoogle Scholar
  183. Yamada H, Nagao A, Nishise H, Tani Y (1982) Glycerol Dehydrogenase from Cellulomonas sp. NT 3060: Purification and Characterisation. Agnc Bioi Chem 46 (9): 1333–1339Google Scholar
  184. Yamada-Onodera K, Yamamoto H, Emoto E, Kawahara N, Tani Y (2002) Characterisation of glycerol dehydrogenase from a methylotrophic yeast, Hansenula polymorpha Dl-1, and its gene cloning. Acta Biotechnol 22: 337–353CrossRefGoogle Scholar
  185. Yang Z, Zhang Z (2018a) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: review. Biotechnol Adv 36(1):182–195PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yang Z, Zhang Z (2018b) Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2018.03.019, in pressPubMedCrossRefGoogle Scholar
  187. Yurimoto H (2009) Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii. Biosci Biotechnol Biochem 73(4):793–800PubMedCrossRefGoogle Scholar
  188. Zepeda AB, Figueroa CA, Pessoa A, Farías JG (2018a) Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Braz J Microbiol 49(4):856–864PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zepeda AB, Pessoa A Jr, Farías JG (2018b) Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast. Braz J Microbiol 49(Suppl 1):119–127PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Galina Z. Gayda
    • 1
  • Olha M. Demkiv
    • 1
  • Halyna M. Klepach
    • 2
  • Mykhailo V. Gonchar
    • 1
  • Marina Nisnevitch
    • 3
  1. 1.Institute of Cell Biology, NAS of UkraineLvivUkraine
  2. 2.Drohobych Ivan Franko State Pedagogical UniversityDrohobychUkraine
  3. 3.Department of Chemical Engineering, Biotechnology and MaterialsAriel UniversityArielIsrael

Personalised recommendations