Advertisement

Biotechnological Application of Non-conventional Yeasts for Xylose Valorization

  • Jessica C. Bergmann
  • Débora Trichez
  • Wilson Galvão de Morais Junior
  • Talita Gabriela Salles Ramos
  • Thályta Fraga Pacheco
  • Clara Vida G. C. Carneiro
  • Victor Mendes Honorato
  • Luana Assis Serra
  • João Ricardo M. AlmeidaEmail author
Chapter

Abstract

Demands for clean and sustainable processes and products that are environmentally friendly are challenging biotechnologists to develop new strategies to produce fuels and chemicals. As the petroleum demands rise together with the concern of climatic and environmental changes, there is an increasing interest for renewable energy. Sugars present in the lignocellulosic biomass can be used as raw material in biotechnological processes employing yeasts as catalysts. Several known yeasts such as Saccharomyces cerevisiae assimilate glucose but lack the efficiency to consume xylose. Due to industrial interest, there has been an increasing effort to discover and construct new xylose-assimilating yeast strains. In this sense, due to the diversity and metabolic potential, several non-conventional yeasts species were isolated, identified, and physiologically and genetically characterized in the last years. The current review sought to summarize the main characteristics as well as the biotechnological applications of non-conventional yeasts for xylose utilization. First, it will present and discuss the data about non-conventional yeasts that naturally and efficiently assimilate xylose as Scheffersomyces, Meyerozyma, Candida, Spathaspora, and Kluyveromyces. Then the yeasts Komagataella, Yarrowia, and Ogataea that do not assimilate xylose or poorly assimilate xylose justifying genetic manipulation to increase xylose utilization will also be presented. In each case, basic information about yeast taxonomy, morphology, and physiology will be presented, and the clearest biotechnological application will be introduced.

Keywords

Xylose Biorefinery Yeast Biofuels Renewable chemicals 

References

  1. Abbott DA, Zelle RM, Pronk JT, van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9:1123–1136.  https://doi.org/10.1111/j.1567-1364.2009.00537.xCrossRefPubMedGoogle Scholar
  2. Abdulrachman D, Thongkred P, Kocharin K, Nakpathom M, Somboon B, Narumol N, Champreda V, Eurwilaichitr L, Suwanto A, Nimchua T, Chantasingh D (2017) Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring. BMC Biotechnol 17.  https://doi.org/10.1186/s12896-017-0334-9
  3. Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res 2.  https://doi.org/10.3389/fenrg.2014.00021
  4. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524.  https://doi.org/10.1007/s10529-008-9728-zCrossRefPubMedGoogle Scholar
  5. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317.  https://doi.org/10.1007/s00253-014-5732-5CrossRefPubMedPubMedCentralGoogle Scholar
  6. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467.  https://doi.org/10.1016/j.copbio.2008.08.002CrossRefPubMedGoogle Scholar
  7. Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299.  https://doi.org/10.1002/biot.201000301CrossRefPubMedGoogle Scholar
  8. Araujo FV, Hagler AN (2011) Kluyveromyces aestuarii, a potential environmental quality indicator yeast for mangroves in the State of Rio de Janeiro, Brazil. Braz J Microbiol 42:954–958CrossRefGoogle Scholar
  9. Araújo D, Freitas F, Sevrin C, Grandfils C, Reis MAM (2017) Co-production of chitin-glucan complex and xylitol by Komagataella pastoris using glucose and xylose mixtures as carbon source. Carbohydr Polym 166:24–30.  https://doi.org/10.1016/j.carbpol.2017.02.088CrossRefPubMedGoogle Scholar
  10. Artifon W, Bonatto C, Bordin ER, Bazoti SF, Dervanoski A, Alves SL, Treichel H (2018) Bioethanol Production From Hydrolyzed Lignocellulosic After Detoxification Via Adsorption With Activated Carbon and Dried Air Stripping. Front Bioeng Biotechnol 6.  https://doi.org/10.3389/fbioe.2018.00107
  11. Bajwa PK, Phaenark C, Grant N, Zhang X, Paice M, Martin VJJ, Trevors JT, Lee H (2011) Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour Technol 102:9965–9969.  https://doi.org/10.1016/j.biortech.2011.08.027CrossRefPubMedGoogle Scholar
  12. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. In: McMillan JD, Adney WS, Mielenz JR, Klasson KT (eds) Twenty-seventh symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, pp 496–508CrossRefGoogle Scholar
  13. Barbosa AC, Cadete RM, Gomes FCO, Lachance M-A, Rosa CA (2009) Candida materiae sp. nov., a yeast species isolated from rotting wood in the Atlantic Rain Forest. Int J Syst Evol Microbiol 59:2104–2106.  https://doi.org/10.1099/ijs.0.009175-0CrossRefPubMedGoogle Scholar
  14. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387.  https://doi.org/10.1016/j.plipres.2009.08.005CrossRefPubMedGoogle Scholar
  15. Bier MCJ, Maranho LT, Azevedo JAM, Junios LS d S (2007) Crescimento e consumo de Xilose de Candida guilliermondii na fermentação submersa utilizando-se bagaço de cana-de-açúcar. Evidência 7:119–130Google Scholar
  16. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5.  https://doi.org/10.1038/ncomms4131
  17. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539.  https://doi.org/10.1039/b922014cCrossRefGoogle Scholar
  18. Bruinenberg PM, Bot PHM, Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292.  https://doi.org/10.1007/BF00500493CrossRefGoogle Scholar
  19. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJP, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PWJ, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KAT, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MPH, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NAR, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662.  https://doi.org/10.1038/nature08064CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cadete RM, Rosa CA (2018) The yeasts of the genus Spathaspora : potential candidates for second-generation biofuel production: Spathaspora yeasts as candidates for 2G bioethanol production. Yeast 35:191–199.  https://doi.org/10.1002/yea.3279CrossRefPubMedGoogle Scholar
  21. Cadete RM, Santos RO, Melo MA, Mouro A, DL Gça, Stambuk BU, Gomes FCO, Lachance M-A, Rosa CA (2009) Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342.  https://doi.org/10.1111/j.1567-1364.2009.00582.xCrossRefPubMedGoogle Scholar
  22. Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA (2012) Diversity and Physiological Characterization of D-Xylose-Fermenting Yeasts Isolated from the Brazilian Amazonian Forest. PLoS One 7:e43135.  https://doi.org/10.1371/journal.pone.0043135CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cadete RM, Melo MA, Zilli JE, Vital MJS, Mouro A, Prompt AH, Gomes FCO, Stambuk BU, Lachance M-A, Rosa CA (2013) Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel d-xylose-fermenting yeast species from Brazilian Amazonian forest. Antonie Van Leeuwenhoek 103:421–431.  https://doi.org/10.1007/s10482-012-9822-zCrossRefPubMedGoogle Scholar
  24. Cadete RM, de las Heras AM, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund M-F, Rosa CA, Fonseca C (2016a) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9.  https://doi.org/10.1186/s13068-016-0570-6
  25. Cadete RM, Melo-Cheab MA, Viana AL, Oliveira ES, Fonseca C, Rosa CA (2016b) The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World J Microbiol Biotechnol 32.  https://doi.org/10.1007/s11274-016-2166-5
  26. Canilha L, Milagres AMF, Silva SS, Almeida e Silva JB, Felipe MGA, Roche GJM, Ferraz A, Carvalho W (2010) Sacarificação da Biomassa Lignocelulósica através de pré-hidrólise ácida seguida por hidrólise enzimática: uma estratégia de “desconstrução” da fibra vegetal. Revista Analytica 44Google Scholar
  27. Cernak P, Estrela R, Poddar S, Skerker JM, Cheng Y-F, Carlson AK, Chen B, Glynn VM, Furlan M, Ryan OW, Donnelly MK, Arkin AP, Taylor JW, Cate JHD (2018) Engineering Kluyveromyces marxianus as a robust synthetic biology platform host. mBio 9.  https://doi.org/10.1128/mBio.01410-18
  28. Chakravorty M, Veiga LA, Bacila M, Horecker BL (1962) Pentose Metabolism in Candida. II. The diphosphopyridine nucleotide-specific polyol dehydrogenase of candida utilis. J Biol Chem 237:1014–1020PubMedGoogle Scholar
  29. Chandel AK, Singh OV, Rao LV, Chandrasekhar G, Narasu ML (2011) Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresour Technol 102:1709–1714.  https://doi.org/10.1016/j.biortech.2010.08.016CrossRefPubMedGoogle Scholar
  30. Chen W-H, Pen B-L, Yu C-T, Hwang W-S (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour Technol 102:2916–2924.  https://doi.org/10.1016/j.biortech.2010.11.052CrossRefPubMedGoogle Scholar
  31. Christopher L (2012) Adding value prior to pulping: bioproducts from hemicellulose. In: Okia DCA (ed) Global perspectives on sustainable forest management. InTechGoogle Scholar
  32. Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M (2013) Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol 33:243–251.  https://doi.org/10.1016/j.fm.2012.09.023CrossRefPubMedGoogle Scholar
  33. Comitini F, Ciani M (2011) Kluyveromyces wickerhamii killer toxin: purification and activity towards Brettanomyces/Dekkera yeasts in grape must: Kwkt killer toxin purification. FEMS Microbiol Lett 316:77–82.  https://doi.org/10.1111/j.1574-6968.2010.02194.xCrossRefPubMedGoogle Scholar
  34. Corte L, di Cagno R, Groenewald M, Roscini L, Colabella C, Gobbetti M, Cardinali G (2015) Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol 48:206–215.  https://doi.org/10.1016/j.fm.2014.12.014CrossRefPubMedGoogle Scholar
  35. Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, Lombard L, Martín MP, Sandoval-Denis M, Alexandrova AV, Barnes CW, Baseia IG, Bezerra JDP, Guarnaccia V, May TW, Hernández-Restrepo M, Stchigel AM, Miller AN, Ordoñez ME, Abreu VP, Accioly T, Agnello C, Agustin Colmán A, Albuquerque CC, Alfredo DS, Alvarado P, Araújo-Magalhães GR, Arauzo S, Atkinson T, Barili A, Barreto RW, Bezerra JL, Cabral TS, Camello Rodríguez F, Cruz RHSF, Daniëls PP, da Silva BDB, de Almeida DAC, de Carvalho Júnior AA, Decock CA, Delgat L, Denman S, Dimitrov RA, Edwards J, Fedosova AG, Ferreira RJ, Firmino AL, Flores JA, García D, Gené J, Giraldo A, Góis JS, Gomes AAM, Gonçalves CM, Gouliamova DE, Groenewald M, Guéorguiev BV, Guevara-Suarez M, Gusmão LFP, Hosaka K, Hubka V, Huhndorf SM, Jadan M, Jurjević Ž, Kraak B, Kučera V, Kumar TKA, Kušan I, Lacerda SR, Lamlertthon S, Lisboa WS, Loizides M, Luangsa-ard JJ, Lysková P, Mac Cormack WP, Macedo DM, Machado AR, Malysheva EF, Marinho P, Matočec N, Meijer M, Mešić A, Mongkolsamrit S, Moreira KA, Morozova OV, Nair KU, Nakamura N, Noisripoom W, Olariaga I, Oliveira RJV, Paiva LM, Pawar P, Pereira OL, Peterson SW, Prieto M, Rodríguez-Andrade E, Rojo De Blas C, Roy M, Santos ES, Sharma R, Silva GA, Souza-Motta CM, Takeuchi-Kaneko Y, Tanaka C, Thakur A, Smith MT, Tkalčec Z, Valenzuela-Lopez N, van der Kleij P, Verbeken A, Viana MG, Wang XW, Groenewald JZ (2017) Fungal Planet description sheets: 625–715. Persoonia Mol Phylog Evolut Fungi.  https://doi.org/10.3767/persoonia.2017.39.11
  36. da Cunha-Pereira F, Hickert LR, Rech R, Dillon AP, Záchia Ayub MA (2017) Fermentation of hexoses and pentoses from hydrolyzed soybean Hull into ethanol and xylitol BY Candida guilliermondii BL 13. Braz J Chem Eng 34:927–936CrossRefGoogle Scholar
  37. Dantán-González E, Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Valle-Hernández J, Gama-Martínez Y, Tinoco-Valencia JR, Serrano-Carreón L, Ortiz-Hernández L (2015) Impact of Meyerozyma guilliermondii isolated from chickens against Eimeria sp. protozoan, an in vitro analysis. BMC Vet Res 11:1–11.  https://doi.org/10.1186/s12917-015-0589-0CrossRefGoogle Scholar
  38. de Albuquerque TL, da Silva IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789.  https://doi.org/10.1016/j.procbio.2014.07.010CrossRefGoogle Scholar
  39. de Lima PBA, Mulder KCL, Melo NTM, Carvalho LS, Menino GS, Mulinari E, de Castro VH, dos Reis TF, Goldman GH, Magalhães BS, Parachin NS (2016) Novel homologous lactate transporter improves l-lactic acid production from glycerol in recombinant strains of Pichia pastoris. Microb Cell Factories 15.  https://doi.org/10.1186/s12934-016-0557-9
  40. De Marco L, Epis S, Capone A, Martin E, Bozic J, Crotti E, Ricci I, Sassera D 2018a The genomes of four Meyerozyma caribbica isolates and novel insights into the Meyerozyma guilliermondii species complex. G3 (Bethesda) 8(3):755–759.  https://doi.org/10.1534/g3.117.300316CrossRefGoogle Scholar
  41. De Marco L, Epis S, Capone A, Martin E, Bozic J, Crotti E, Ricci I, Sassera D (2018b) The genomes of four Meyerozyma caribbica isolates and novel insights into the Meyerozyma guilliermondii Species Complex. G3 (Bethesda) 8(3):755–759.  https://doi.org/10.1534/g3.117.300316CrossRefGoogle Scholar
  42. De Schutter K, Lin Y-C, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566.  https://doi.org/10.1038/nbt.1544CrossRefPubMedGoogle Scholar
  43. de Souza G, Luana TCNV, Samila RPN, Maxwel AA (2017) Efficient production of second generation ethanol and xylitol by yeasts from Amazonian beetles (Coleoptera) and their galleries. Afr J Microbiol Res 11:814–824.  https://doi.org/10.5897/AJMR2017.8522CrossRefGoogle Scholar
  44. Dias O, Gombert AK, Ferreira EC, Rocha I (2012) Genome-wide metabolic (re-) annotation of Kluyveromyces lactis. BMC Genomics 13:517.  https://doi.org/10.1186/1471-2164-13-517CrossRefPubMedPubMedCentralGoogle Scholar
  45. du Preez JC, van der Walt JP (1983) Fermentation of D-xylose to ethanol by a strain ofCandida shehatae. Biotechnol Lett 5:357–362.  https://doi.org/10.1007/BF01141138CrossRefGoogle Scholar
  46. Duan H, Wang H, Ma B, Jiang P, Tu P, Ni Z, Li X, Li M, Ma X, Wang B, Wu R, Li M (2015) Codon optimization and expression of irisin in Pichia pastoris GS115. Int J Biol Macromol 79:21–26.  https://doi.org/10.1016/j.ijbiomac.2015.04.030CrossRefPubMedGoogle Scholar
  47. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich J-M, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud J-M, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard G-F, Straub M-L, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet J-L (2004) Genome evolution in yeasts. Nature 430:35–44.  https://doi.org/10.1038/nature02579CrossRefPubMedGoogle Scholar
  48. Elshahed MS (2010) Microbiological aspects of biofuel production: Current status and future directions. J Adv Res 1:103–111.  https://doi.org/10.1016/j.jare.2010.03.001CrossRefGoogle Scholar
  49. Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and d-glucose/d-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799.  https://doi.org/10.1016/j.procbio.2014.08.004CrossRefGoogle Scholar
  50. Ferreira AD, Mussatto SI, Cadete RM, Rosa CA, Silva SS (2011) Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547–554.  https://doi.org/10.1002/yea.1858CrossRefPubMedGoogle Scholar
  51. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354.  https://doi.org/10.1007/s00253-008-1458-6CrossRefPubMedGoogle Scholar
  52. Franco Marcelino PR, da Silva VL, Rodrigues Philippini R, Von Zuben CJ, Contiero J, dos Santos JC, da Silva SS (2017) Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One 12:e0187125.  https://doi.org/10.1371/journal.pone.0187125CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gallo R, Trapp A (2017) The chemical conversion of biomass-derived saccharides: an overview. J Braz Chem Soc.  https://doi.org/10.21577/0103-5053.20170009
  54. García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613.  https://doi.org/10.1016/j.biortech.2008.09.012CrossRefPubMedGoogle Scholar
  55. Garrote G, Dominguez H, Parajo JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligasaccharide production. J Food Eng 52(3):211–218CrossRefGoogle Scholar
  56. Gı́rio F, Amaro C, Azinheira H, Pelica F, Amaral-Collaço M (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 71:245–251.  https://doi.org/10.1016/S0960-8524(99)00078-4CrossRefGoogle Scholar
  57. Gonçalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:1–14.  https://doi.org/10.1155/2014/476207CrossRefGoogle Scholar
  58. Groeneveld P, Stouthamer AH, Westerhoff HV (2009) Super life – how and why ‘cell selection’ leads to the fastest-growing eukaryote: Control of highest eukaryotic growth rate. FEBS J 276:254–270.  https://doi.org/10.1111/j.1742-4658.2008.06778.xCrossRefPubMedGoogle Scholar
  59. Groenewald M, Smith MT (2013) The teleomorph state of Candida deformans Langeron & Guerra and description of Yarrowia yakushimensis comb. nov. Antonie Van Leeuwenhoek 103:1023–1028.  https://doi.org/10.1007/s10482-013-9882-8CrossRefPubMedGoogle Scholar
  60. Guan D, Li Y, Shiroma R, Ike M, Tokuyasu K (2013) Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose. Bioresour Technol 132:419–422.  https://doi.org/10.1016/j.biortech.2012.12.040CrossRefPubMedGoogle Scholar
  61. Gunah P (2011) Optimization of xylose production from sugarcane bagasse using response surface methodology (RSM). University of Malayia Pahang, BachelorGoogle Scholar
  62. Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WTAM, van Dijken JP, Jetten MSM, Pronk JT, Op den Camp HJM (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141.  https://doi.org/10.1007/s00203-003-0565-0CrossRefPubMedGoogle Scholar
  63. Hernández-Pérez AF, de Arruda PV, Felipe M das G de A (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47:489–496.  https://doi.org/10.1016/j.bjm.2016.01.019CrossRefGoogle Scholar
  64. Hommel RK, Ahnert P (1999) Candida. In: Encyclopedia of food microbiology, 1st edn. Elsevier Ltd, LondonCrossRefGoogle Scholar
  65. Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214.  https://doi.org/10.1007/s00253-011-3694-4CrossRefPubMedGoogle Scholar
  66. Hou J, Qiu C, Shen Y, Li H, Bao X (2017) Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 17.  https://doi.org/10.1093/femsyr/fox034
  67. Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123.  https://doi.org/10.1128/AEM.01311-06CrossRefPubMedGoogle Scholar
  68. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. In: Pentoses and lignin. Springer, Berlin/Heidelberg, pp 1–32Google Scholar
  69. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326.  https://doi.org/10.1016/j.copbio.2006.05.008CrossRefPubMedGoogle Scholar
  70. Jeffries TW, Van Vleet JRH (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 9:793–807.  https://doi.org/10.1111/j.1567-1364.2009.00525.xCrossRefPubMedPubMedCentralGoogle Scholar
  71. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin Y-S, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326.  https://doi.org/10.1038/nbt1290CrossRefPubMedGoogle Scholar
  72. Ji X, Ma H, Tian Z, Lyu G, Fang G, Chen J, Saeed HAM (2017) Production of xylose from diluted sulfuric acid hydrolysis of wheat straw. Bioresources 12:7084–7095CrossRefGoogle Scholar
  73. Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) d-xylose degradation pathway in the halophilic Archaeon Haloferax volcanii. J Biol Chem 284:27290–27303.  https://doi.org/10.1074/jbc.M109.003814CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134.  https://doi.org/10.1002/bbb.4CrossRefGoogle Scholar
  75. Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules 23:309.  https://doi.org/10.3390/molecules23020309CrossRefPubMedCentralGoogle Scholar
  76. Kim D, Woo HM (2018) Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Appl Microbiol Biotechnol 102:9471–9480.  https://doi.org/10.1007/s00253-018-9353-2CrossRefPubMedGoogle Scholar
  77. Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702.  https://doi.org/10.1016/j.biortech.2007.10.055CrossRefPubMedGoogle Scholar
  78. Kim SR, Park Y-C, Jin Y-S, Seo J-H (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31:851–861.  https://doi.org/10.1016/j.biotechadv.2013.03.004CrossRefPubMedGoogle Scholar
  79. Kim D, Ximenes EA, Nichols NN, Cao G, Frazer SE, Ladisch MR (2016) Maleic acid treatment of biologically detoxified corn stover liquor. Bioresour Technol 216:437–445.  https://doi.org/10.1016/j.biortech.2016.05.086CrossRefPubMedGoogle Scholar
  80. Kim D, Orrego D, Ximenes EA, Ladisch MR (2017) Cellulose conversion of corn pericarp without pretreatment. Bioresour Technol 245:511–517.  https://doi.org/10.1016/j.biortech.2017.08.156CrossRefPubMedGoogle Scholar
  81. Kręgiel D, Pawlikowska E, Antolak H (2017) Non-conventional yeasts in fermentation processes: potentialities and limitations. In: Lucas C, Pais C (eds) Old yeasts – new questions. InTechGoogle Scholar
  82. Kumar V, Krishania M, Preet Sandhu P, Ahluwalia V, Gnansounou E, Sangwan RS (2018) Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419.  https://doi.org/10.1016/j.biortech.2017.11.039CrossRefPubMedGoogle Scholar
  83. Kuroda K, Kobayashi K, Kitagawa Y, Nakagawa T, Tsumura H, Komeda T, Shinmi D, Mori E, Motoki K, Fuju K, Sakai T, Nonaka K, Suzuki T, Ichikawa K, Chiba Y, Jigami Y (2008) Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta. Appl Environ Microbiol 74:446–453.  https://doi.org/10.1128/AEM.02106-07CrossRefPubMedGoogle Scholar
  84. Kurtzman CP (2005) New species and a new combination in the Hyphopichia and Yarrowia yeast clades. Antonie Van Leeuwenhoek 88:121–130.  https://doi.org/10.1007/s10482-005-2495-0CrossRefPubMedGoogle Scholar
  85. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438.  https://doi.org/10.1007/s10295-009-0638-4CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kurtzman CP (2011a) Yarrowia van der Walt & von Arx (1980). In: The yeasts. Elsevier, Amsterdam, pp 927–929CrossRefGoogle Scholar
  87. Kurtzman CP (ed) (2011b) The yeasts: a taxonomic study 5 Elsevier, AmsterdamGoogle Scholar
  88. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331CrossRefGoogle Scholar
  89. Kurtzman C, Robnett C (2003) Phylogenetic relationships among yeasts of the ? complex? determined from multigene sequence analyses. FEMS Yeast Res 3:417–432.  https://doi.org/10.1016/S1567-1356(03)00012-6CrossRefPubMedGoogle Scholar
  90. Kurtzman CP, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2–14.  https://doi.org/10.1007/S10267-009-0011-5CrossRefGoogle Scholar
  91. Kurtzman M, Suzuki M, Kurtzman CP, Clade C, Clade C, U CY-T, Ay MY-T, Ay CY-T, Ay CY-T, Ay CY-T, U DY-T (2010) Meyerozyma Kurtzman & M. Suzuki (2010). Elsevier BV, LondonGoogle Scholar
  92. Kurylenko OO, Ruchala J, Hryniv OB, Abbas CA, Dmytruk KV, Sibirny AA (2014) Metabolic engineering and classical selectionof the methylotrophic thermotolerant yeast Hansenulapolymorpha for improvement of high-temperature xylose alcoholicfermentation. Microb Cell Factories 13:122.  https://doi.org/10.1186/s12934-014-0122-3CrossRefGoogle Scholar
  93. Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Factories 16.  https://doi.org/10.1186/s12934-017-0694-9
  94. Lachance M-A (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7:642–645.  https://doi.org/10.1111/j.1567-1364.2006.00197.xCrossRefPubMedGoogle Scholar
  95. Lachance M-A (2011) Kluyveromyces van der Walt (1971). In: The yeasts. Elsevier, Amsterdam, pp 471–481CrossRefGoogle Scholar
  96. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26.  https://doi.org/10.1016/j.fbr.2010.01.001CrossRefGoogle Scholar
  97. Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Coq A-MC-L, Nicaud J-M (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124.  https://doi.org/10.1016/j.ymben.2016.07.001CrossRefPubMedGoogle Scholar
  98. Li H, Alper HS (2016) Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnol J 11:1230–1240.  https://doi.org/10.1002/biot.201600210CrossRefPubMedGoogle Scholar
  99. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906.  https://doi.org/10.1016/j.biortech.2009.10.066CrossRefPubMedGoogle Scholar
  100. Li P, Sun H, Chen Z, Li Y, Zhu T (2015) Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb Cell Factories 14.  https://doi.org/10.1186/s12934-015-0206-8
  101. Liu Y, Wu C, Wang J, Mo W, Yu M (2013) Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris. Appl Microbiol Biotechnol 97:10349–10358.  https://doi.org/10.1007/s00253-013-5264-4CrossRefPubMedPubMedCentralGoogle Scholar
  102. Liu H-H, Ji X-J, Huang H (2015) Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 33:1522–1546.  https://doi.org/10.1016/j.biotechadv.2015.07.010CrossRefPubMedGoogle Scholar
  103. Liu X-J, Cao W-N, Ren Y-C, Xu L-L, Yi Z-H, Liu Z, Hui F-L (2016) Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose-fermenting yeast species from China. Sci Rep 6.  https://doi.org/10.1038/srep32181
  104. Lobo FP, Goncalves DL, Alves SL, Gerber AL, de Vasconcelos ATR, Basso LC, Franco GR, Soares MA, Cadete RM, Rosa CA, Stambuk BU (2014a) Draft genome sequence of the D-xylose-fermenting yeast Spathaspora arborariae UFMG-HM19.1AT. Genome Announ 2.  https://doi.org/10.1128/genomeA.01163-13
  105. Lobo FP, Goncalves DL, Alves SL, Gerber AL, de Vasconcelos ATR, Basso LC, Franco GR, Soares MA, Cadete RM, Rosa CA, Stambuk BU (2014b) Draft genome sequence of the D-xylose-fermenting yeast Spathaspora arborariae UFMG-HM19.1AT. Genome Announ 2.  https://doi.org/10.1128/genomeA.01163-13
  106. Löbs A-K, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synthet Syst Biotechnol 2:198–207.  https://doi.org/10.1016/j.synbio.2017.08.002CrossRefGoogle Scholar
  107. Long TM, Su Y-K, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500.  https://doi.org/10.1128/AEM.00374-12CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro APT, Fonseca C, Lachance M-A, Hittinger CT, Rosa CA (2016) Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res 16:fow044.  https://doi.org/10.1093/femsyr/fow044CrossRefPubMedGoogle Scholar
  109. Lopes DD, Cibulski SP, Mayer FQ, Siqueira FM, Rosa CA, Hector RE, Ayub MAZ (2017) Draft genome sequence of the d-xylose-fermenting yeast Spathaspora xylofermentans UFMG-HMD23.3. Genome Announ 5.  https://doi.org/10.1128/genomeA.00815-17
  110. Lopes MR, Batista TM, Franco GR, Ribeiro LR, Santos ARO, Furtado C, Moreira RG, Goes-Neto A, Vital MJS, Rosa LH, Lachance M-A, Rosa CA (2018) Scheffersomyces stambukii f.a., sp. nov., a d-xylose-fermenting species isolated from rotting wood. Int J Syst Evol Microbiol 68:2306–2312.  https://doi.org/10.1099/ijsem.0.002834CrossRefPubMedGoogle Scholar
  111. Ma K, He M, You H, Pan L, Hu G, Cui Y, Maeda T (2017) Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. RSC Adv 7:31180–31188.  https://doi.org/10.1039/C7RA04049KCrossRefGoogle Scholar
  112. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078.  https://doi.org/10.1007/s00253-008-1794-6CrossRefPubMedGoogle Scholar
  113. Mans R, Daran J-MG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56.  https://doi.org/10.1016/j.copbio.2017.10.011CrossRefPubMedGoogle Scholar
  114. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzym Microb Technol 40:426–432.  https://doi.org/10.1016/j.enzmictec.2006.07.015CrossRefGoogle Scholar
  115. Martini C, Tauk-Tornisielo SM, Codato CB, Bastos RG, Ceccato-Antonini SR (2016) A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World J Microbiol Biotechnol 32.  https://doi.org/10.1007/s11274-016-2036-1
  116. Martins GM, Bocchini-Martins DA, Bezzerra-Bussoli C, Pagnocca FC, Boscolo M, Monteiro DA, da Silva R, Gomes E (2018) The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Braz J Microbiol 49:162–168.  https://doi.org/10.1016/j.bjm.2016.11.014CrossRefPubMedGoogle Scholar
  117. Mateo S, Puentes JG, Moya AJ, Sánchez S (2015) Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour Technol 190:1–6.  https://doi.org/10.1016/j.biortech.2015.04.045CrossRefPubMedGoogle Scholar
  118. Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Factories 8:29.  https://doi.org/10.1186/1475-2859-8-29CrossRefGoogle Scholar
  119. Mellitzer A, Weis R, Glieder A, Flicker K (2012) Expression of lignocellulolytic enzymes in Pichia pastoris. Microb Cell Factories 11:61.  https://doi.org/10.1186/1475-2859-11-61CrossRefGoogle Scholar
  120. Meyer SA, Anderson K, Brown RE, Smith MT, Yarrow D, Mitchell G, Ahearn DG (1975) Physiological and DNA characterization of Candida maltose, a hydrocarbon-utilizing yeast. Arch Microbiol 104:225–231CrossRefGoogle Scholar
  121. Morais CG, Batista TM, Kominek J, Borelli BM, Furtado C, Moreira RG, Franco GR, Rosa LH, Fonseca C, Hittinger CT, Lachance M-A, Rosa CA (2017) Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. Int J Syst Evol Microbiol 67:3798–3805.  https://doi.org/10.1099/ijsem.0.002186CrossRefPubMedGoogle Scholar
  122. Morales P, Gentina JC, Aroca G, Mussatto SI (2017) Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus. Ind Crop Prod 106:5–11.  https://doi.org/10.1016/j.indcrop.2016.12.023CrossRefGoogle Scholar
  123. Moran G (2004) Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150:3363–3382.  https://doi.org/10.1099/mic.0.27221-0CrossRefPubMedGoogle Scholar
  124. Morrissey JP, Etschmann MMW, Schrader J, de Billerbeck GM (2015) Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 32:3–16PubMedGoogle Scholar
  125. Mosier N (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025CrossRefPubMedGoogle Scholar
  126. Moysés D, Reis V, Almeida J, Moraes L, Torres F (2016) Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 17:207.  https://doi.org/10.3390/ijms17030207CrossRefPubMedPubMedCentralGoogle Scholar
  127. Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM (2017) Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnol Biofuels 10.  https://doi.org/10.1186/s13068-017-0899-5
  128. Nagy E (2015) Biodiversity of food spoilage Yarrowia group in different kinds of food. Dissertation, University of BudapestGoogle Scholar
  129. Nagy E, Niss M, Dlauchy D, Arneborg N, Nielsen DS, Peter G (2013) Yarrowia divulgata f.a., sp. nov., a yeast species from animal-related and marine sources. Int J Syst Evol Microbiol 63:4818–4823.  https://doi.org/10.1099/ijs.0.057208-0CrossRefPubMedGoogle Scholar
  130. Nagy E, Dlauchy D, Medeiros AO, Péter G, Rosa CA (2014) Yarrowia porcina sp. nov. and Yarrowia bubula f.a. sp. nov., two yeast species from meat and river sediment. Antonie Van Leeuwenhoek 105:697–707.  https://doi.org/10.1007/s10482-014-0125-4CrossRefPubMedGoogle Scholar
  131. Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F (2011) Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol 89:1947–1962.  https://doi.org/10.1007/s00253-010-2993-5CrossRefPubMedGoogle Scholar
  132. Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Costa AC, Rocha GJM, Ienczak JL (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis: Fermentation Strategy for Second Generation Ethanol Production. Biotechnol Bioeng 114:2211–2221.  https://doi.org/10.1002/bit.26357CrossRefPubMedGoogle Scholar
  133. Nakase T, Komagata K (1971) Significance of DNA base composition in the classification of the yeast genus Candida. J Gen Appl Microbiol 17:259–179CrossRefGoogle Scholar
  134. Nguyen NH, Suh S-O, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110:1232–1241.  https://doi.org/10.1016/j.mycres.2006.07.002CrossRefPubMedGoogle Scholar
  135. Niehus X, Crutz-Le Coq A-M, Sandoval G, Nicaud J-M, Ledesma-Amaro R (2018) Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuels 11.  https://doi.org/10.1186/s13068-018-1010-6
  136. Nygård Y, Toivari MH, Penttilä M, Ruohonen L, Wiebe MG (2011) Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis. Metab Eng 13:383–391.  https://doi.org/10.1016/j.ymben.2011.04.001CrossRefPubMedGoogle Scholar
  137. Odds FC (2010) Molecular phylogenetics and epidemiology of Candida albicans. Future Microbiol 5:67–79.  https://doi.org/10.2217/fmb.09.113CrossRefPubMedGoogle Scholar
  138. Okada N, Tanimura A, Hirakawa H, Takashima M, Ogawa J, Shima J (2017) Draft Genome Sequences of the Xylose-Fermenting Yeast Scheffersomyces shehatae NBRC 1983 T and a Thermotolerant Isolate of S. shehatae ATY839 (JCM 18690). Genome Announ 5.  https://doi.org/10.1128/genomeA.00347-17
  139. Palsson BO, Fathi-Afshar S, Rudd DF, Lightfoot EN (1981) Biomass as a Source of Chemical Feedstocks: An Economic Evaluation. Science 213:513–517.  https://doi.org/10.1126/science.213.4507.513CrossRefPubMedGoogle Scholar
  140. Protchenko O, Philpott CC, Sibirny AA (2011) Insertion mutagenesis. doi: https://doi.org/10.1111/j.1567-1364.2011.00720.xCrossRefGoogle Scholar
  141. Puseenam A, Kocharin K, Tanapongpipat S, Eurwilaichitr L, Ingsriswang S, Roongsawang N (2018) A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 365.  https://doi.org/10.1093/femsle/fny238
  142. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces : the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15:fov053.  https://doi.org/10.1093/femsyr/fov053CrossRefPubMedGoogle Scholar
  143. Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Babu AK, Aneesh EM, Pandey A (2018) Non-conventional Yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fny222
  144. Ren Y, Chen L, Niu Q, Hui F (2014) Description of Scheffersomyces henanensis sp. nov., a new D-xylose-fermenting yeast species isolated from rotten wood. PLoS One 9:e92315.  https://doi.org/10.1371/journal.pone.0092315CrossRefPubMedPubMedCentralGoogle Scholar
  145. Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Göker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk H-P, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci 113:9882–9887.  https://doi.org/10.1073/pnas.1603941113CrossRefPubMedGoogle Scholar
  146. Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis: Kluyveromyces lactis. Yeast 30:165–177.  https://doi.org/10.1002/yea.2954CrossRefPubMedGoogle Scholar
  147. Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1–2. BMC Microbiol 18.  https://doi.org/10.1186/s12866-018-1218-4
  148. Romi W, Keisam S, Ahmed G, Jeyaram K (2014) Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol 14:52.  https://doi.org/10.1186/1471-2180-14-52CrossRefPubMedPubMedCentralGoogle Scholar
  149. Rosa C, Lachance M, Silva J, Teixeira A, Marini M, Antonini Y, Martins R (2003) Yeast communities associated with stingless bees. FEMS Yeast Res 4:271–275.  https://doi.org/10.1016/S1567-1356(03)00173-9CrossRefPubMedGoogle Scholar
  150. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym Microb Technol 42:160–166.  https://doi.org/10.1016/j.enzmictec.2007.09.002CrossRefGoogle Scholar
  151. Ryabova O, Chmil O, Sibirny A (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast. FEMS Yeast Res 4:157–164.  https://doi.org/10.1016/S1567-1356(03)00146-6CrossRefPubMedGoogle Scholar
  152. Ryu S, Trinh CT (2017) Understanding functional roles of native pentose-specific transporters for activating dormant pentose metabolism in Yarrowia lipolytica. Appl Environ Microbiol 84.  https://doi.org/10.1128/AEM.02146-17
  153. Ryu S, Hipp J, Trinh CT (2016) Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica. Appl Environ Microbiol 82:1334–1345.  https://doi.org/10.1128/AEM.03582-15CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sampaio FC, da Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from D-xylose. Braz J Microbiol 34:321–324.  https://doi.org/10.1590/S1517-83822003000400007CrossRefGoogle Scholar
  155. Satish T, Murthy NYS (2010) Optimisation of xylose production using xylanase. Intl J Sci 8:909–913Google Scholar
  156. Schauer F, Hanschke R (1999) Taxonomy and ecology of the genus Candida. Mycosis 42:12–21CrossRefGoogle Scholar
  157. Schreiber WT, Geib NV, Wingfield B, Acree SF (1930) Semi-commercial production of xylose. Ind Eng Chem 22:497–501.  https://doi.org/10.1021/ie50245a020CrossRefGoogle Scholar
  158. Shu M, Shen W, Yang S, Wang X, Wang F, Wang Y, Ma L (2016) High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration. Enzym Microb Technol 92:56–66.  https://doi.org/10.1016/j.enzmictec.2016.06.007CrossRefGoogle Scholar
  159. Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP (1982) Conversion of D-xylose to ethanol by the yeastPachysolen tannophilus. Biotechnol Bioeng 24:371–384.  https://doi.org/10.1002/bit.260240210CrossRefPubMedGoogle Scholar
  160. Song KH, Song JY, Hong SG, Baek H, Kim SY, Hyun HH (2002) Production of mannitol by a novel strain of Candida magnoliae. Biotechnol Lett 24:9–12CrossRefGoogle Scholar
  161. Spagnuolo M, Shabbir Hussain M, Gambill L, Blenner M (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol 9.  https://doi.org/10.3389/fmicb.2018.01077
  162. Spencer JFT, Spencer DM (eds) (1997) Yeasts in natural and artificial habitats. Springer, Berlin/HeidelbergGoogle Scholar
  163. Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116.  https://doi.org/10.1016/j.jbiotec.2016.02.023CrossRefPubMedGoogle Scholar
  164. Sreekrishna K, Kropp KE (1996) Pichia pastoris. In: Nonconventional yeasts in biotechnology. Springer, Berlin/Heidelberg, pp 203–253CrossRefGoogle Scholar
  165. Stambuk BU, Franden MA, Singh A, Zhang M (2003) D-xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 106:255–264.  https://doi.org/10.1385/ABAB:106:1-3:255CrossRefGoogle Scholar
  166. Stenderup A, Bak AL (1968) Deoxyribonucleic acid base composition of some species within the genus Candida. J Gen Microbiol 52:231–236CrossRefGoogle Scholar
  167. Stephanopoulos G TM (2013) Engineered microbes and methods for microbial oil overproduction from cellulosic materialsGoogle Scholar
  168. Su Y-K, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124: Aeration Effects on Xylose Fermenting Yeasts. Biotechnol Bioeng 112:457–469.  https://doi.org/10.1002/bit.25445CrossRefPubMedGoogle Scholar
  169. Su Y-K, Willis LB, Rehmann L, Smith DR, Jeffries TW (2018) Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Res 18.  https://doi.org/10.1093/femsyr/foy011
  170. Suh S-O, Marshall CJ, Mchugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts: gut yeasts of passalid beetles. Mol Ecol 12:3137–3145.  https://doi.org/10.1046/j.1365-294X.2003.01973.xCrossRefPubMedGoogle Scholar
  171. Sun J, Ding S-Y, Doran-Peterson J (2013) Chapter 1: biomass and its biorefinery: novel approaches from nature-inspired strategies and technology. In: Sun J, Ding S-Y, Peterson JD (eds) Energy and environment series. Royal Society of Chemistry, Cambridge, pp 1–13Google Scholar
  172. Swain MR, Krishnan C (2015) Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis. Ind Crop Prod 77:1039–1046.  https://doi.org/10.1016/j.indcrop.2015.10.013CrossRefGoogle Scholar
  173. Tizazu BZ, Roy K, Moholkar VS (2018) Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresour Technol 268:247–258.  https://doi.org/10.1016/j.biortech.2018.07.141CrossRefPubMedGoogle Scholar
  174. Tsai CT, Huang C-T (2008) Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzym Microb Technol 42:459–465.  https://doi.org/10.1016/j.enzmictec.2008.01.018CrossRefGoogle Scholar
  175. Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102:9216–9222.  https://doi.org/10.1016/j.biortech.2011.06.047CrossRefGoogle Scholar
  176. Urbina H, Blackwell M (2012) Multilocus phylogenetic study of the scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS ONE 7.  https://doi.org/10.1371/journal.pone.0039128CrossRefGoogle Scholar
  177. Vallejos ME, Chade M, Mereles EB, Bengoechea DI, Brizuela JG, Felissia FE, Area MC (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crop Prod 91:161–169.  https://doi.org/10.1016/j.indcrop.2016.07.007CrossRefGoogle Scholar
  178. van der Walt JP (1965) The emendation of the genus Kluyveromyces v. d. Walt. Antonie Van Leeuwenhoek 31:341–348CrossRefGoogle Scholar
  179. van der Walt JP, von Arx JA (1980) The yeast genus Yarrowia gen. nov. Antonie Van Leeuwenhoek 46:517–521.  https://doi.org/10.1007/BF00394008CrossRefPubMedGoogle Scholar
  180. van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392.  https://doi.org/10.1111/j.1567-1364.2006.00049.xCrossRefPubMedGoogle Scholar
  181. van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177CrossRefGoogle Scholar
  182. Varela JA, Gethins L, Stanton C, Ross P, Morrissey JP (2017) Applications of Kluyveromyces marxianus in biotechnology. In: Satyanarayana T, Kunze G (eds) Yeast diversity in human welfare. Springer, Singapore, pp 439–453CrossRefGoogle Scholar
  183. Varize CS, Cadete RM, Lopes LD, Christofoleti-Furlan RM, Lachance M-A, Rosa CA, Basso LC (2018) Spathaspora piracicabensis f. a., sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. Antonie Van Leeuwenhoek 111:525–531.  https://doi.org/10.1007/s10482-017-0974-8CrossRefPubMedGoogle Scholar
  184. Vaz de Arruda P, dos Santos JC, de Cássia Lacerda Brambilla Rodrigues R, da Silva DDV, Yamakawa CK, de Moraes Rocha GJ, Júnior JN, da Cruz Pradella JG, Vaz Rossell CE, das Graças de Almeida Felipe M (2017) Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J Ind Eng Chem 47:297–302.  https://doi.org/10.1016/j.jiec.2016.11.046CrossRefGoogle Scholar
  185. Venkateswar Rao L, Goli JK, Gentela J, Koti S (2015) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310.  https://doi.org/10.1016/j.biortech.2016.04.092CrossRefGoogle Scholar
  186. Veras HCT, Parachin NS, Almeida JRM (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Factories 16.  https://doi.org/10.1186/s12934-017-0766-x
  187. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677CrossRefGoogle Scholar
  188. Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Commun 94:248–254.  https://doi.org/10.1016/S0006-291X(80)80213-0CrossRefPubMedGoogle Scholar
  189. Wang Y, Ren Y-C, Zhang Z-T, Ke T, Hui F-L (2016) Spathaspora allomyrinae sp. nov., a d-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. Int J Syst Evol Microbiol 66:2008–2012.  https://doi.org/10.1099/ijsem.0.000979CrossRefPubMedGoogle Scholar
  190. Wannawilai S, Chisti Y, Sirisansaneeyakul S (2017) A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food Bioprod Process 105:129–140.  https://doi.org/10.1016/j.fbp.2017.07.002CrossRefGoogle Scholar
  191. Webb SR, Lee H (1990) Regulation of d-xylose utilization by hexoses in pentose-fermenting yeasts. Biotechnol Adv 8:685–697.  https://doi.org/10.1016/0734-9750(90)91991-OCrossRefPubMedGoogle Scholar
  192. Wei L, Liu J, Qi H, Wen J (2015) Engineering Scheffersomyces stipitis for fumaric acid production from xylose. Bioresour Technol 187:246–254.  https://doi.org/10.1016/j.biortech.2015.03.122CrossRefPubMedGoogle Scholar
  193. Wickerham LJ, Burton KA (1954) A clarification of the relationship of Candida Guilliermondii to other yeasts by a study of their mating types. J Bacteriol 68(5):594–597Google Scholar
  194. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011a) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci 108:13212–13217.  https://doi.org/10.1073/pnas.1103039108CrossRefPubMedGoogle Scholar
  195. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011b) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci 108:13212–13217.  https://doi.org/10.1073/pnas.1103039108CrossRefPubMedGoogle Scholar
  196. Wrent P, Rivas EM, Peinado JM, de Silóniz MI (2016) Development of an affordable typing method for Meyerozyma guilliermondii using microsatellite markers. Int J Food Microbiol 217:1–6.  https://doi.org/10.1016/j.ijfoodmicro.2015.10.008CrossRefPubMedGoogle Scholar
  197. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129.  https://doi.org/10.1016/j.copbio.2017.12.003CrossRefPubMedGoogle Scholar
  198. Yamada Y, Kondo K (1972) Taxonomic significance of coenzyme Q system in yeasts and yeast-like fungi (1). Yeast 363:373Google Scholar
  199. Yamada Y, Maeda K, Mikata K (1994) The Phylogenetic Relationships of the Hat-shaped Ascospore-forming, Nitrate-assimilating Pichia Species, Formerly Classified in the Genus Hansenula S ydow et S ydow , Based on the Partial Sequences of 18S and 26S Ribosomal RNAs (Saccharomycetaceae): The Proposals of Three New Genera, Ogataea , Kuraishia , and Nakazawaea. Biosci Biotechnol Biochem 58:1245–1257.  https://doi.org/10.1271/bbb.58.1245CrossRefPubMedGoogle Scholar
  200. Yan Y, Zhang X, Zheng X, Apaliya MT, Yang Q, Zhao L, Gu X, Zhang H (2018) Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and it’s effects on the protein expression profile of pears. Postharvest Biol Technol 136:124–131.  https://doi.org/10.1016/j.postharvbio.2017.10.016CrossRefGoogle Scholar
  201. Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36:182–195.  https://doi.org/10.1016/j.biotechadv.2017.11.002CrossRefPubMedGoogle Scholar
  202. Yang SW, Park JB, Han NS, Ryu YW, Seo JH (1999) Production of erythritol from glucose by an osmophilic mutant of Candida magnolia. Biotechnol Lett 21:887–890CrossRefGoogle Scholar
  203. Yang L, He QS, Corscadden K, Udenigwe CC (2015) The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol Rep 5:77–88.  https://doi.org/10.1016/j.btre.2014.12.004CrossRefGoogle Scholar
  204. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: The yeasts. Elsevier, Amsterdam, pp 77–100CrossRefGoogle Scholar
  205. Yurkov AM, Dlauchy D, Péter G (2017) Meyerozyma amylolytica sp. nov. from temperate deciduous trees and the transfer of five candida species to the genus meyerozyma. Int J Syst Evol Microbiol 67:3977–3981.  https://doi.org/10.1099/ijsem.0.002232CrossRefPubMedGoogle Scholar
  206. Yuvadetkun P, Reungsang A, Boonmee M (2018) Comparison between free cells and immobilized cells of Candida shehatae in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renew Energy 115:634–640.  https://doi.org/10.1016/j.renene.2017.08.033CrossRefGoogle Scholar
  207. Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141.  https://doi.org/10.1016/j.biortech.2011.11.119CrossRefPubMedGoogle Scholar
  208. Zhang H-J, Fan X-G, Qiu X-L, Zhang Q-X, Wang W-Y, Li S-X, Deng L-H, Koffas MAG, Wei D-S, Yuan Q-P (2014) A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst Eng 37:2425–2436.  https://doi.org/10.1007/s00449-014-1219-0CrossRefPubMedGoogle Scholar
  209. Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J (2015) Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 31:140–152.  https://doi.org/10.1016/j.ymben.2015.07.008CrossRefPubMedGoogle Scholar
  210. Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J (2016) Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour Technol 216:227–237.  https://doi.org/10.1016/j.biortech.2016.05.068CrossRefPubMedGoogle Scholar
  211. Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus pichia guilliermondii Isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970.  https://doi.org/10.3390/molecules15117961CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zhao C, Gu D, Nambou K, Wei L, Chen J, Imanaka T, Hua Q (2015) Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources. J Biotechnol 206:42–51.  https://doi.org/10.1016/j.jbiotec.2015.04.005CrossRefPubMedGoogle Scholar
  213. Zhou W-J, Yang J-K, Mao L, Miao L-H (2015) Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzym Microb Technol 71:66–72.  https://doi.org/10.1016/j.enzmictec.2014.10.007CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jessica C. Bergmann
    • 1
  • Débora Trichez
    • 1
  • Wilson Galvão de Morais Junior
    • 1
  • Talita Gabriela Salles Ramos
    • 1
  • Thályta Fraga Pacheco
    • 1
  • Clara Vida G. C. Carneiro
    • 1
  • Victor Mendes Honorato
    • 1
  • Luana Assis Serra
    • 1
  • João Ricardo M. Almeida
    • 1
    Email author
  1. 1.Embrapa AgroenergiaBrasília-DFBrazil

Personalised recommendations