Advertisement

l-Cysteine Metabolism Found in Saccharomyces cerevisiae and Ogataea parapolymorpha

  • Hiroshi TakagiEmail author
Chapter

Abstract

Sulfur’s cellular requirements can be met by the cell’s uptake of sulfur-containing amino acids. The requirements can also be fulfilled by the cell’s assimilation of inorganic sulfur into organic compounds, such as l-homocysteine (Hcy) and l-cysteine (Cys), which are used for the biosynthesis of l-methionine (Met) and l-glutathione (GSH), respectively. Cys can be synthesized via the sulfur assimilation pathway in microorganisms and plants, but not the corresponding pathway in animals. Saccharomyces cerevisiae, which is the conventional yeast, synthesizes Cys from Hcy via a reverse trans-sulfuration pathway. It has been concluded that Cys is synthesized exclusively by l-cystathionine β-synthase and l-cystathionine γ-lyase. A promising host strain for high-level production of GSH is the thermotolerant methylotrophic yeast Ogataea parapolymorpha (formerly Hansenula polymorpha). Domain analyses of the serine O-acetyltransferase (SAT) in the non-conventional yeast Ogataea parapolymorpha (OpSat1) and those of other fungal SATs have demonstrated that these proteins have a mitochondrial targeting sequence (MTS) at the N-terminus that differs markedly from the classical bacterial and plant SATs. OpSat1 is functionally interchangeable with the E. coli SAT, i.e., CysE, even though compared to CysE, OpSat1 has far lower enzymatic activity, with marginal feedback inhibition by Cys. In light of the key role of OpSat1 in the regulation of the pathway of Cys biosynthesis in O. parapolymorpha, and its crucial role in sulfur metabolism, it is apparent that OpSat1 could be a target for the metabolic engineering used to generate yeast strains that produce sulfur-containing metabolites such as GSH.

Keywords

l-Cysteine Sulfur Sulfate Thiosulfate Saccharomyces cerevisiae Ogataea parapolymorpha O-Acetyl-l-serine l-Serine O-Acetyltransferase Feedback inhibition Mitochondria 

Notes

Acknowledgments

We are greatly indebted to our co-researchers Dr. Hyun Ah Kang, Ji Yoon Yeon, and Su Jin Yoo (Chung-Ang University, Seoul, Korea) and Dr. Bun-ichiro Ono (Ritsumeikan University, Japan). I am also grateful to Dr. Shigeru Nakamori (Fukui Prefectural University, Fukui, Japan) and Dr. Iwao Ohtsu (Nara Institute Science and Technology, Nara, Japan). This review includes the work supported by a grant from Ajinomoto, Co., Inc., to H.T.

References

  1. Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243CrossRefGoogle Scholar
  2. Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152CrossRefGoogle Scholar
  3. Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262CrossRefGoogle Scholar
  4. Brzywczy J, Sienko M, Kucharska A, Paszewski A (2002) Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of Sulphur metabolism in fungi. Yeast 19:29–35CrossRefGoogle Scholar
  5. Cherest H, Surdin-Kerjan Y (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58PubMedPubMedCentralGoogle Scholar
  6. Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ (2004) Escherichia coli l -serine deaminase requires a [4Fe-4S] cluster in catalysis. J Biol Chem 279:32418–32425CrossRefGoogle Scholar
  7. D’Andrea R, Surdin-Kerjan Y, Pure G, Cherest H (1987) Molecular genetics of met17 and met25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene. Mol Gen Genet 207:165–170CrossRefGoogle Scholar
  8. Daßler T, Maier T, Winterhalter C, Böck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112CrossRefGoogle Scholar
  9. Franke I, Resch A, Daßler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166CrossRefGoogle Scholar
  10. Funahashi E, Saiki K, Honda K, Sugiura Y, Kawano Y, Ohtsu I, Watanabe D, Wakabayashi Y, Abe T, Nakanishi T, Suematsu M, Takagi H (2015) A finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and an improvement of ethanol production. J Biosci Bioeng 120:666–669CrossRefGoogle Scholar
  11. Grynberg M, Topczewski J, Godzik A, Paszewski A (2000) The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases. Microbiology 146:2695–2703CrossRefGoogle Scholar
  12. Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067CrossRefGoogle Scholar
  13. Harris CL (1981) Cystine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035PubMedPubMedCentralGoogle Scholar
  14. Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Loux V, Heilier JF, Bonnarme P, Beckerich JM, Landaud S (2011) Exploration of sulfur metabolism in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 91:1409–1423CrossRefGoogle Scholar
  15. Hunt S (1985) Degradation of amino acids accompanying in vitro protein hydrolysis. In: Barrett GC (ed) Chemistry and biology of the amino acids. Chapman & Hall, London, pp 3763–3798Google Scholar
  16. Jacobson ES, Metzenberg RL (1977) Control of aryl sulfatase in a serine auxotroph of Neurospora. J Bacteriol 130:1397–1398PubMedPubMedCentralGoogle Scholar
  17. Kai Y, Kashiwagi T, Ishikawa K, Ziyatdinov MK, Redkina EI, Kiriukhin MY, Gusyatiner MM, Kobayashi S, Takagi H, Suzuki E (2006) Engineering of Escherichia coli l-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by l-cysteine. Protein Eng Des Sel 19:163–167CrossRefGoogle Scholar
  18. Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, Choi ES, Choe KB, Rhee SK (2001) Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76:175–185CrossRefGoogle Scholar
  19. Kaszycki P, Walski T, Hachicho N, Heipieper HJ (2013) Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant. Appl Microbiol Biotechnol 97:5555–5564CrossRefGoogle Scholar
  20. Kitajima T, Jigami Y, Chiba Y (2012) Cytotoxic mechanism of selenomethionine in yeast. J Biol Chem 287:10032–10038CrossRefGoogle Scholar
  21. Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss RIII, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznicoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM, Washington, DC, pp 514–527Google Scholar
  22. Kredich NM, Tomkins GM (1966) The enzymatic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965PubMedGoogle Scholar
  23. Kurtzman CPA (2011) New methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. Antonie Van Leeuwenhoek 100:455–462CrossRefGoogle Scholar
  24. Liszewska F, Blaszczyk A, Sirko A (2001) Modification of non-protein thiols contents in transgenic tobacco plants producing bacterial enzymes of cysteine biosynthesis pathway. Acta Biochim Pol 48:647–656PubMedGoogle Scholar
  25. Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96CrossRefGoogle Scholar
  26. Nakamori S, Kobayashi S, Kobayashi C, Takagi H (1998) Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611PubMedPubMedCentralGoogle Scholar
  27. Nakatani T, Ohtsu I, Nonaka G, Wiriyathanawudhiwong N, Morigasaki S, Takagi H (2012) Enhancement of thioredoxin/glutaredoxin-mediated l-cysteine synthesis from S-sulfocysteine increases l-cysteine production in Escherichia coli. Microb Cell Factories 11:62.  https://doi.org/10.1186/1475-2859-11-62CrossRefGoogle Scholar
  28. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812CrossRefGoogle Scholar
  29. Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745CrossRefGoogle Scholar
  30. Ohtsu I, Wiriyathanawudhiwong N, Morigasaki S, Nakatani T, Kadokura H, Takagi, H (2010) The l-cysteine/l-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. J Biol Chem 285: 17479–17487CrossRefGoogle Scholar
  31. Ohtsu I, Kawano Y, Suzuki M, Morigasaki S, Saiki K, Yamazaki S, Nonaka G, Takagi H (2015) Uptake of l-cystine via an ABC transporter contributes defense of oxidative stress in the l-cysteine export-dependent manner in Escherichia coli. PLoS One 10(4):e0120619CrossRefGoogle Scholar
  32. Ono B, Suruga T, Yamamoto M, Yamamoto S, Murata K, Kimura A, Shinoda S, Ohmori S (1984) Cystathionine accumulation in Saccharomyces cerevisiae. J Bacteriol 158:860–865PubMedPubMedCentralGoogle Scholar
  33. Ono B, Shirahige Y, Nanjoh A, Andoh N, Ohue H, Ishino-Arao Y (1988) Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine β-synthase deficiency. J Bacteriol 170:5883–5889CrossRefGoogle Scholar
  34. Ono B, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15:1365–1375CrossRefGoogle Scholar
  35. Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950CrossRefGoogle Scholar
  36. Paszewski A, Grabski J (1974) Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Mol Gen Genet 132:307–320CrossRefGoogle Scholar
  37. Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res 2:295–305PubMedGoogle Scholar
  38. Pittman MS, Corker H, Wu G, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849CrossRefGoogle Scholar
  39. Soda K (1987) Microbial sulfur amino acids: an overview. In: Jakoby WB, Griffith OW (eds) Methods in enzymology, vol 143. Academic Press, Orlando, pp 453–459Google Scholar
  40. Sohn MJ, Yoo SJ, Oh DB, Kwon O, Lee SY, Sibirny AA, Kang HA (2014) Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9:e100725CrossRefGoogle Scholar
  41. Sørensen MA, Pederson S (1991) Cysteine even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246CrossRefGoogle Scholar
  42. Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E (2005) Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187:3762–3778CrossRefGoogle Scholar
  43. Suh SO, Zhou JJ (2010) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10:631–638PubMedGoogle Scholar
  44. Takagi H, Ohtsu (2017) l-Cysteine metabolism and fermentation in microorganisms. In: Yokota A, Ikeda M (eds) Amino acid fermentation. Springer, New York, pp 129–152CrossRefGoogle Scholar
  45. Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999a) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of l-cysteine and l-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327CrossRefGoogle Scholar
  46. Takagi H, Awano N, Kobayashi S, Noji M, Saito K, Nakamori S (1999b) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol Lett 179:453–459PubMedGoogle Scholar
  47. Takagi H, Yoshioka K, Awano N, Nakamori S, Ono B (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218:291–297CrossRefGoogle Scholar
  48. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532PubMedPubMedCentralGoogle Scholar
  49. Thomas D, Barbey R, Henry D, Surdin-Kerjan Y (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138:2021–2028CrossRefGoogle Scholar
  50. Vermeji P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837Google Scholar
  51. Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 73:48–54CrossRefGoogle Scholar
  52. Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81:903–913CrossRefGoogle Scholar
  53. Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24:195–203CrossRefGoogle Scholar
  54. Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H (2006) Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 72:4735–4742CrossRefGoogle Scholar
  55. Yamagata S, Takeshima K, Naiki N (1974) Evidence for the identity of O-acetylserine sulfhydrylase with O-acetylhomoserine sulfhydrylase in yeast. J Biochem 75:1221–1229CrossRefGoogle Scholar
  56. Yeon JY, Yoo SJ, Takagi H, Kahn HA (2018) A novel mitochondrial serine O-acetyltransferase, OpSAT1, plays a critical role in sulfur metabolism in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Sci Rep 8:2377CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Biological Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyNaraJapan

Personalised recommendations