Advertisement

Signature of Electronic Documents Based on the Recognition of Minutiae Fingerprints

  • Souhaïl SmaouiEmail author
  • Mustapha Sakka
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 146)

Abstract

This work presents a new approach of security of electronic documents. This approach has the advantage of integrating several hybrid technologies as the biometrics which is based on the recognition of the digital fingerprints, coding PDF417, the techniques of encoding, and the electronic signature of documents. This approach uses all the techniques previously illustrated to reinforce the security of signature and consequently the warranty of authentication of the signatory. The authentication is a task requested by several fields to ensure security and the iniquity of information.

In our approach we chose the use of the techniques of recognition of digital fingerprints in order to ensure a high level of security and confidentiality. With this intention we prepared a database containing a list of digital fingerprints for a set of people.

The classification was made with the Multi-Layer Perceptron (MLP) neural network.

Keywords

Authentication Digital fingerprints Minutiae Neural network 

References

  1. 1.
    Isobe, Y., et al.: A Proposal for authentication system using a smart card with fingerprints, information processing society of Japan SIG Notes 99-CSEC-4 99(24), 55–60 (1999)Google Scholar
  2. 2.
    Wu, J.K.: Neural networks and simulation methods. Editeur CRC Press dec 1993, ISBN 0-8247-9181-9Google Scholar
  3. 3.
    AIM Europe Uniform Symbology Specification PDF417, published by AIM Europe, 1994 [Spécification relative à la symbologie PDF 417 uniforme de l’AIM Europe, publiée par l’AIM Europe, 1994]Google Scholar
  4. 4.
    Labati, R.D., Piuri, V., Scotti, F.: A neural-based minutiae pair identification method for touch-less fingerprint images. Computational Intelligence in Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop, 96–102Google Scholar
  5. 5.
    Kristensen, T., Borthen, J., Fyllingsnes, K.: Comparison of neural network based fingerprint classification techniques, 1043–1048Google Scholar
  6. 6.
    Djarah, D.: Application des réseaux de neurones pour la gestion d’un système de perceptron pour un robot mobile d’intérieur. Thèse préparer au laboratoire d’électronique avancée(LEA) BatnaGoogle Scholar
  7. 7.
    Zighed, D.A., Rakotomala, R.: A method for non arborescent induction graphs. Technical report, Laboratory ERIC, University of Lyon2 (1996)Google Scholar
  8. 8.
    Dreyfus, G., Personnaz, L.: Perceptrons, past and present. Organisation des systèmes intelligents (1999)Google Scholar
  9. 9.
    Grippo, L., Lucidi, S.: Convergence conditions, line search algorithms and trust region implementations for the Polak-Ribière conjugate gradient method. Optim. Methods Softw. 20(1), 71–98 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: Third Fingerprint Verification Competition, Proc. International Conference on Biometric Authentication (ICBA), 1–7, Hong Kong, July (2004)Google Scholar
  11. 11.
    Samaria, F.S., Harter, A.C.: Parameterization of a stochastic model for humanface identification. IEEE Comput. Soc. Press, 138–180 (1994)Google Scholar
  12. 12.
    Sakka, M., Smaoui, S.: Signature de documents électroniques basée sur la reconnaissance des empreintes digitales, JRST 2015 Sfax-Tunisie. 2015 Sfax-Tunisie Google Scholar
  13. 13.
    Loussaief, S., Adelkrim, A.: Machine learning framework for image classification, SETIT, 58–61 (2016)Google Scholar
  14. 14.
    Manel, B.S., Karim, S.E., Bouhlel, M.S.: Anomaly detection in hyperspectral images based spatial spectral classification, SETIT, 166–170 (2016)Google Scholar
  15. 15.
    Zouari, J., Hamdi, M.: Enhanced fingerprint fuzzy vault based on distortion invariant minutiae structures, SETIT, 491–495 (2016)Google Scholar
  16. 16.
    Smari, K., salim Bouhlel, M.: Gesture recognition system and finger tracking with kinect: Steps, SETIT, 544–548 (2016)Google Scholar
  17. 17.
    Bana, S., Dr. Kaur, D.: Fingerprint recognition using image segmentation. Int. J. Adv. Eng. Sci. Technol. (IJAEST), 12–23 (2011)Google Scholar
  18. 18.
    Maheswari, S.U., Dr. Chandra, E.: A novel fingerprint recognition using minutia features. Int. J. Adv. Eng. Sci. Technol. (IJEST)Google Scholar
  19. 19.
    Gowthami, A.T., Dr. Mamatha, H.R.: Fingerprint recognition using zone based linear binary patterns. Procedia Computer Science 58, 552–557 (2015)CrossRefGoogle Scholar
  20. 20.
    Thai, L.H., Tam, H.N.: Fingerprint recognition using standardized fingerprint model. IJCSI Int. J. Comput. Sci., 11–17 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Higher Institute of the Technological Studies of SfaxSfaxTunisia

Personalised recommendations