High Efficiency Multiplierless DCT Architectures

  • Yassine HachaïchiEmail author
  • Sonia Mami
  • Younes Lahbib
  • Sabrine Rjab
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 146)


In this paper, we propose a new multiplierless Cordic Loeffler DCT (CLDCT) architecture based on the Taylor expansion. The new architectures relie on an enhanced choice of rotation angles. A suitable selection of the considered function, in one hand, and of the order of approximation of Taylor expansion, on the other hand, have led to a low power and high precision scale free DCT.

Comparing to classical architectures, we improve the image quality, whilst also reducing the power consumption. Our contributed architectures have closer PSNR to the Loeffler DCT, to which we compare in terms of image quality. The enhancement of PSNR reaches up to 12.89 dB in comparison with the CLDCT and 14.61 dB when compared to the BinDCT.


CORDIC Scale free Taylor expansion High Precision Low power 


  1. 1.
    Al-Janabi, S., Al-Shourbaji, I.: A smart and effective method for digital video compression. In: 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 532–538, December 2016Google Scholar
  2. 2.
    Benati, N., Bahi, H.: Spoken term detection based on acoustic speech segmentation. In: 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 267–271, December 2016Google Scholar
  3. 3.
    Jeong, H., Kim, J., Cho, W.K.: Low-power multiplierless DCT architecture using image correlation. IEEE Trans. Consum. Electron. 50(1), 262–267 (2004)CrossRefGoogle Scholar
  4. 4.
    Sun, C.-C., Ruan, S.-J., Heyne, B., Goetze, J.: Low-power and high quality Cordic-based Loeffler DCT for signal processing. IET Circ. Devices Syst. 1(6), 453–461 (2007)CrossRefGoogle Scholar
  5. 5.
    Sun, C.-C., Donner, P., Götze, J.: VLSI implementation of a configurable IP Core for quantized discrete cosine and integer transforms. Int. J. Circ. Theory Appl. 40(11), 1107–1126 (2012)CrossRefGoogle Scholar
  6. 6.
    Mami, S., Saad, I.B., Lahbib, Y., Hachaichi, Y.: Enhanced configurable DCT Cordic Loeffler architectures for optimal Power-PSNR trade-off. J. Signal Process. Syst. 90(3), 371–393 (2018)CrossRefGoogle Scholar
  7. 7.
    E1 Aakif, M., Belkouch, S., Chabini, N., Hassani, M.M.: Low power and fast DCT architecture using multiplier-less method. In: Faible Tension Faible Consommation (FTFC), pp. 63–66, June 2011Google Scholar
  8. 8.
    Jeske, R., et al.: Low cost and high throughput multiplierless design of a 16 point 1-D DCT of the new HEVC video coding standard. In: Programmable Logic (SPL), Bento Gonçalves, RS, March 2012Google Scholar
  9. 9.
    Dang, P.P., Chau, P.M., Nguyen, T.Q., Tran, T.D.: BinDCT and its efficient VLSI architectures for real-time embedded applications. J. Image Sci. Technol. 49(2), 124–137 (2005)Google Scholar
  10. 10.
    Loeffler, C., Lightenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms with 11-multiplications. In: Proceedings of ICASSP, Glasgow, UK, vol. 2, pp. 988–991, May 1989Google Scholar
  11. 11.
    Hoang, T.-T., Nguyen, H.-T., Nguyen, X.-T., Pham, C.-K., Le, D.-H.: High-performance DCT architecture based on angle recoding CORDIC and scale-free factor. In: The Sixth International Conference on Communications and Electronics (ICCE), July 2016Google Scholar
  12. 12.
    Aggarwal, S., Meher, P.K., Khare, K.: Area-time efficient scaling-free CORDIC using generalized micro-rotation selection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1542–1546 (2012)CrossRefGoogle Scholar
  13. 13.
    Mokhtar, A.S.N., Reaz, M.B.I., Chellappan, K., Mohd Ali, M.A.: Scaling free CORDIC algorithm implementation of sine and cosine function. In: Proceedings of the World Congress on Engineering, WCE 2013, vol. II, July 2013Google Scholar
  14. 14.
    Meher, P.K., Valls, J., Juang, T.-B., Sridharan, K., Maharatna, K.: CORDIC circuits. In: Arithmetic Circuits for DSP Applications. Wiley (2017)Google Scholar
  15. 15.
    Hachaïchi, Y., Lahbib, Y.: An efficient mathematically correct scale free CORDIC, June 2016. (submitted)
  16. 16.
    International Organization for Standardization. ITU-T Recommendation T.81. In ISO/IEC IS 10918-1, October 2017.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yassine Hachaïchi
    • 1
    • 2
    Email author
  • Sonia Mami
    • 3
    • 4
  • Younes Lahbib
    • 1
    • 4
  • Sabrine Rjab
    • 1
  1. 1.ENICarthage, University of CarthageTunisTunisia
  2. 2.Research Laboratory Smart Electricity & ICT, SEICT, LR18ES44. National Engineering School of CarthageUniversity of CarthageTunisTunisia
  3. 3.Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  4. 4.Research Laboratory LAPER UR-17-ES11Université de Tunis El ManarTunisTunisia

Personalised recommendations