Advertisement

Percutaneous Ablation of Breast Masses

  • Bruno D. Fornage
Chapter
  • 86 Downloads

Abstract

The term “ablation” is used to describe the removal of a biological structure or functionality. Therefore, it can apply to two different kinds of procedures for breast masses: (1) the physical removal of a tumor (i.e., surgical excision) and (2) techniques aimed at the complete in situ destruction of a mass using a physical agent, without actually removing the mass. This chapter describes techniques of US-guided ablation of small breast cancers and the advantages and limitations of these techniques. The chapter also covers the remaining difficulties that need to be overcome and questions that need to be answered before these or yet-to-be-developed techniques find their place in routine breast cancer management.

Keywords

Vacuum-assisted biopsy Breast lesion excision system Intact Halo Radiofrequency ablation Laser-induced hyperthermia Microwave thermotherapy High-intensity focused ultrasound Cryoablation Iceball Irreversible electroporation 

Supplementary material

Video 21.1

US-guided biopsy performed with the Intact device. Videoclip shows how the radiofrequency-energized cutting basket of the Intact excision system is deployed around the target and how the specimen is retrieved. (Courtesy of Dr. P. Whitworth) (MP4 23,490 kb)

Video 21.2

Deployment of the multiple arrays of the needle electrode of the RITA radiofrequency ablation system (see also Fig. 21.5). (MP4 7397 kb)

Video 21.3

US-guided cryoablation of a small cancer. Compression with the transducer is applied to the breast to confirm that the iceball is not sticking to the underlying chest wall. (MP4 2739 kb)

Video 21.4

US-guided injection of lukewarm saline solution between the advancing edge of the iceball and the overlying skin to prevent frostbite during cryoablation (see also Fig. 21.20). (MP4 26,291 kb)

References

  1. 1.
    Doridot V, Meunier M, El Khoury C, Nos C, Vincent-Salomon A, Sigal-Zafrani B, et al. Stereotactic radioguided surgery by siteSelect for subclinical mammographic lesions. Ann Surg Oncol. 2005;12(2):181–8. Google Scholar
  2. 2.
    Sie A, Bryan DC, Gaines V, Killebrew LK, Kim CH, Morrison CC, et al. Multicenter evaluation of the breast lesion excision system, a percutaneous, vacuum-assisted, intact-specimen breast biopsy device. Cancer. 2006;107(5):945–9. Google Scholar
  3. 3.
    Whitworth PW, Simpson JF, Poller WR, Schonholz SM, Turner JF, Phillips RF, et al. Definitive diagnosis for high-risk breast lesions without open surgical excision: the Intact Percutaneous Excision Trial (IPET). Ann Surg Oncol. 2011;18(11):3047–52. Google Scholar
  4. 4.
    Sperber F, Blank A, Metser U, Flusser G, Klausner JM, Lev-Chelouche D. Diagnosis and treatment of breast fibroadenomas by ultrasound-guided vacuum-assisted biopsy. Arch Surg. 2003;138(7):796–800. Google Scholar
  5. 5.
    Fornage BD, Hwang RF. Current status of imaging-guided percutaneous ablation of breast cancer. AJR Am J Roentgenol. 2014;203(2):442–8. Google Scholar
  6. 6.
    Jeffrey SS, Birdwell RL, Ikeda DM, Daniel BL, Nowels KW, Dirbas FM, et al. Radiofrequency ablation of breast cancer: first report of an emerging technology. Arch Surg. 1999;134(10):1064–8. Google Scholar
  7. 7.
    Klimberg VS, Boneti C, Adkins LL, Smith M, Siegel E, Zharov V, et al. Feasibility of percutaneous excision followed by ablation for local control in breast cancer. Ann Surg Oncol. 2011;18(11):3079–87.Google Scholar
  8. 8.
    Fornage BD, Sneige N, Ross MI, Mirza AN, Kuerer HM, Edeiken BS, et al. Small (< or = 2-cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology. 2004;231(1):215–24. Google Scholar
  9. 9.
    Izzo F, Thomas R, Delrio P, Rinaldo M, Vallone P, DeChiara A, et al. Radiofrequency ablation in patients with primary breast carcinoma: a pilot study in 26 patients. Cancer. 2001;92(8):2036–44. Google Scholar
  10. 10.
    Klimberg VS, Kepple J, Shafirstein G, Adkins L, Henry-Tillman R, Youssef E, et al. eRFA: excision followed by RFA-a new technique to improve local control in breast cancer. Ann Surg Oncol. 2006;13(11):1422–33. Google Scholar
  11. 11.
    Wilson M, Korourian S, Boneti C, Adkins L, Badgwell B, Lee J, et al. Long-term results of excision followed by radiofrequency ablation as the sole means of local therapy for breast cancer. Ann Surg Oncol. 2012;19(10):3192–8. Google Scholar
  12. 12.
    van Esser S, Stapper G, van Diest PJ, van den Bosch MA, Klaessens JH, Mali WP, et al. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol. 2009;16(8):2259–63. Google Scholar
  13. 13.
    Dowlatshahi K, Francescatti DS, Bloom KJ. Laser therapy for small breast cancers. Am J Surg. 2002;184(4):359–63. Google Scholar
  14. 14.
    Harms SE. MR-guided minimally invasive procedures. Magn Reson Imaging Clin N Am. 2001;9(2):381–92, vii. Google Scholar
  15. 15.
    Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(Suppl 1):S69–83. Google Scholar
  16. 16.
    Zhou W, Zha X, Liu X, Ding Q, Chen L, Ni Y, et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012;263(2):364–73. Google Scholar
  17. 17.
    Brenin DR. Focused ultrasound ablation for the treatment of breast cancer. Ann Surg Oncol. 2011;18(11):3088–94. Google Scholar
  18. 18.
    Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219(1):176–85. Google Scholar
  19. 19.
    Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness – initial experience. Radiology. 2003;227(3):849–55. Google Scholar
  20. 20.
    Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, et al. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg. 2006;203(1):54–63. Google Scholar
  21. 21.
    Zippel DB, Papa MZ. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer. 2005;12(1):32–8. Google Scholar
  22. 22.
    Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat. 2005;92(1):51–60. Google Scholar
  23. 23.
    Delworth MG, Pisters LL, Fornage BD, von Eschenbach AC. Cryotherapy for renal cell carcinoma and angiomyolipoma. J Urol. 1996;155(1):252–4; discussion 4–5. Google Scholar
  24. 24.
    Kaufman CS, Bachman B, Littrup PJ, White M, Carolin KA, Freman-Gibb L, et al. Office-based ultrasound-guided cryoablation of breast fibroadenomas. Am J Surg. 2002;184(5):394–400. Google Scholar
  25. 25.
    Kaufman CS, Littrup PJ, Freeman-Gibb LA, Smith JS, Francescatti D, Simmons R, et al. Office-based cryoablation of breast fibroadenomas with long-term follow-up. Breast J. 2005;11(5):344–50. Google Scholar
  26. 26.
    Nurko J, Mabry CD, Whitworth P, Jarowenko D, Oetting L, Potruch T, et al. Interim results from the FibroAdenoma Cryoablation Treatment Registry. Am J Surg. 2005;190(4):647–51; discussion 51-2. Google Scholar
  27. 27.
    Rui J, Tatsutani KN, Dahiya R, Rubinsky B. Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res Treat. 1999;53(2):185–92. Google Scholar
  28. 28.
    Staren ED, Sabel MS, Gianakakis LM, Wiener GA, Hart VM, Gorski M, et al. Cryosurgery of breast cancer. Arch Surg. 1997;132(1):28–33; discussion 4. Google Scholar
  29. 29.
    Pfleiderer SO, Freesmeyer MG, Marx C, Kuhne-Heid R, Schneider A, Kaiser WA. Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur Radiol. 2002;12(12):3009–14. Google Scholar
  30. 30.
    Sabel MS, Kaufman CS, Whitworth P, Chang H, Stocks LH, Simmons R, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol. 2004;11(5):542–9. Google Scholar
  31. 31.
    Roubidoux MA, Sabel MS, Bailey JE, Kleer CG, Klein KA, Helvie MA. Small (<2.0-cm) breast cancers: mammographic and US findings at US-guided cryoablation–initial experience. Radiology. 2004;233(3):857–67. Google Scholar
  32. 32.
    Littrup PJ, Jallad B, Chandiwala-Mody P, D’Agostini M, Adam BA, Bouwman D. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol. 2009;20(10):1329–41. Google Scholar
  33. 33.
    Poplack SP, Levine GM, Henry L, Wells WA, Heinemann FS, Hanna CM, et al. A pilot study of ultrasound-guided cryoablation of invasive ductal carcinomas up to 15 mm with MRI follow-up and subsequent surgical resection. AJR Am J Roentgenol. 2015;204(5):1100–8. Google Scholar
  34. 34.
    Simmons RM, Ballman KV, Cox C, Carp N, Sabol J, Hwang RF, et al. A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol. 2016;23(8):2438–45. Google Scholar
  35. 35.
    Cryoablation of Small Breast Tumors in Early Stage Breast Cancer 2017. Available from: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2017-00241.
  36. 36.
    Sabel MS, Arora A, Su G, Chang AE. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology. 2006;53(3):360–6. Google Scholar
  37. 37.
    Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol. 2010;17(4):1187–93. Google Scholar
  38. 38.
    Yao C, Guo F, Li C, Sun C. Gene transfer and drug delivery with electric pulse generators. Curr Drug Metab. 2013;14(3):319–23. Google Scholar
  39. 39.
    Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33(2):223–31. Google Scholar
  40. 40.
    Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat. 2005;4(6):699–705. Google Scholar
  41. 41.
    Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat. 2007;6(1):37–48. Google Scholar
  42. 42.
    Daniels C, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng. 2009;131(7):071006. Google Scholar
  43. 43.
    Neal RE 2nd, Davalos RV. The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems. Ann Biomed Eng. 2009;37(12):2615–25. Google Scholar
  44. 44.
    Neal RE 2nd, Singh R, Hatcher HC, Kock ND, Torti SV, Davalos RV. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat. 2010;123(1):295–301. Google Scholar
  45. 45.
    Narayanan G, Froud T, Lo K, Barbery KJ, Perez-Rojas E, Yrizarry J. Pain analysis in patients with hepatocellular carcinoma: irreversible electroporation versus radiofrequency ablation-initial observations. Cardiovasc Intervent Radiol. 2013;36(1):176–82.Google Scholar
  46. 46.
    Daniels CS, Rubinsky B. Cryosurgery with pulsed electric fields. PLoS One. 2011;6(11):e26219. Google Scholar
  47. 47.
    Garbay JR, Mathieu MC, Lamuraglia M, Lassau N, Balleyguier C, Rouzier R. Radiofrequency thermal ablation of breast cancer local recurrence: a phase II clinical trial. Ann Surg Oncol. 2008;15(11):3222–6. Google Scholar
  48. 48.
    Marcy PY, Magne N, Castadot P, Bailet C, Namer M. Ultrasound-guided percutaneous radiofrequency ablation in elderly breast cancer patients: preliminary institutional experience. Br J Radiol. 2007;80(952):267–73.Google Scholar
  49. 49.
    Roberts J, Morden L, MacMath S, Massie K, Olivotto IA, Parker C, et al. The quality of life of elderly women who underwent radiofrequency ablation to treat breast cancer. Qual Health Res. 2006;16(6):762–72.Google Scholar
  50. 50.
    Susini T, Nori J, Olivieri S, Livi L, Bianchi S, Mangialavori G, et al. Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol. 2007;104(2):304–10. Google Scholar
  51. 51.
    Sabel MS. Cryoablation for breast cancer: no need to turn a cold shoulder. J Surg Oncol. 2008;97(6):485–6. Google Scholar
  52. 52.
    Manenti G, Perretta T, Gaspari E, Pistolese CA, Scarano L, Cossu E, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur Radiol. 2011;21(11):2344–53. Google Scholar
  53. 53.
    Copeland EM 3rd, Bland KI. Are minimally invasive techniques for ablation of breast cancer ready for “Prime Time”? Ann Surg Oncol. 2004;11(2):115–6. Google Scholar
  54. 54.
    Kontos M, Felekouras E, Fentiman IS. Radiofrequency ablation in the treatment of primary breast cancer: no surgical redundancies yet. Int J Clin Pract. 2008;62(5):816–20. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bruno D. Fornage
    • 1
  1. 1.The University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations