Platelets: Frozen and Freeze-Dried Current Products in Development and Regulatory Licensing Challenges

  • Heather Pidcoke
  • Kathleen Kelly
  • G. Michael Fitzpatrick
  • Larry J. DumontEmail author


Cryopreserved and lyophilized platelets have a long, but limited, history of human use that dates back to the 1950s yet involves a small number of total study subjects (Fig. 9.1). Despite decades of research characterizing the quality and nature of these products, questions remain regarding the relationship between in vitro performance and in vivo function to control bleeding. That said, results to date indicate promising in vivo hemostatic potential in several animal models. Although the data is retrospective and cannot definitively establish causality, human use of cryopreserved platelets in military settings also appears to be associated with benefit. The regulatory pathway for these products, particularly in the case of cryopreserved platelets, has been decades long, and more trials are needed to provide high-quality data to regulatory bodies. These products could be life-saving in settings where other good alternatives are limited or unavailable.


History of platelets Cryopreserved platelets Frozen platelets DMSO Lyophilized platelets Freeze-dried platelets Trehalose Paraformaldehyde US military FDA 



Anticoagulant Citrate Dextrose Solution


Australian Defense Force


Australian Red Cross


Biomedical Advanced Research and Development Authority


Biomedical Excellence for Safer Transfusion


Coronary artery bypass grafting


Center for Biologics Evaluation and Research


Cluster of differentiation 41a (GPIIb/IIIa)


Cluster of differentiation 42b (GPIb)


Current Good Manufacturing Practice


Cryopreserved Platelets Versus Liquid Platelets Trial


Cryopreserved platelet product


Defense Advanced Research Projects Agency


Dimethyl sulfoxide


Department of Defense


Food and Drug Administration


Fresh frozen plasma


Glycoprotein Ib


Glycoprotein IIb/IIIa


International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use


Lactate dehydrogenase


Liquid-stored platelets


Lyophilized platelets


Lyophilized platelets stabilized with paraformaldehyde


Lyophilized platelets stabilized with trehalose


Medical treatment facilities


North Atlantic Treaty Organization


Non-human primate


National Institutes of Health


Netherlands Armed Forces


New Zealand white rabbits


Platelet additive solution


Polyvinyl chloride


Room temperature, 20–24 °C


United States


Whole blood



Funding for some research studies reported here was from the US Army Medical Research and Materiel Command. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of Defense position, policy, or decision unless so designated by other documentation.

Funding for some research studies reported here was provided in whole or in part with federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201300021C.


  1. 1.
    Brewer DB. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol. 2006;133(3):251–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Dimond L. Blood platelets in the treatment of disease. Br Med J. 1914;2(2811):828–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kickler TS. Dr William W. Duke: pioneer in platelet research. JAMA. 2009;301(21):2267–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Gardner FH, Howell D, Hirsch EO. Platelet transfusions utilizing plastic equipment. J Lab Clin Med. 1954;43(2):196–207.PubMedGoogle Scholar
  5. 5.
    Boulton F. Beginner’s luck--the first in vivo demonstration of functioning platelets; William Duke, 1910. Transfus Med. 2012;22(2):80–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirsch EO, Favre-Gilly J, Dameshek W. Thrombopathic thrombocytopenia; successful transfusion of blood platelets. Blood. 1950;5(6):568–80.PubMedGoogle Scholar
  7. 7.
    Creveld SV, Paulssen MM, Bartels HL, Vonk R. Transfusions of suspensions of blood platelets in thrombocytopenia and thrombopathia. J Clin Pathol. 1953;6(1):41–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kliman A, Gaydos LA, Schroeder LR, Freireich EJ. Repeated plasmapheresis of blood donors as a source of platelets. Blood. 1961;18:303–9.PubMedGoogle Scholar
  9. 9.
    Jackson DP, Sorensen DK, Cronkite EP, Bond VP, Fliedner TM. Effectiveness of transfusions of fresh and lyophilized platelets in controlling bleeding due to thrombocytopenia. J Clin Invest. 1959;38:1689–97.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Filip DJ, Aster RH. Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C. J Lab Clin Med. 1978;91(4):618–24.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med. 1969;280(20):1094–8.CrossRefGoogle Scholar
  12. 12.
    Murphy S, Gardner FH. The effect of temperature on platelet viability. Vox Sang. 1969;17(1):22.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Freireich EJ. Supportive therapy in acute leukemia. CA Cancer J Clin. 1964;14:257–60.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Klein E, Toch R, Farber S, Freeman G, Fiorentino R. Hemostasis in thrombocytopenic bleeding following infusion of stored, frozen platelets. Blood. 1956;11(8):693–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Arnold P, Djerassi I, Farber S, Freeman G, Klein E, Toch R. The preparation and clinical administration of lyophilized platelet material to children with acute leukemia and aplastic anemia. J Pediatr. 1956;49(5):517–22.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Stefanini M, Kistner SA. Platelets, platelet factors and platelet substitutes in the management of thrombocytopenic states. Bibl Haematol. 1958;7:378–81.PubMedGoogle Scholar
  17. 17.
    Murphy S, Gardner FH. Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies. J Clin Invest. 1971;50(2):370–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cohen P, Gardner FH. Platelet preservation. IV. Preservation of human platelet concentrates by controlled slow freezing in a glycerol medium. N Engl J Med. 1966;274(25):1400–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH. Mechanisms of cold-induced platelet actin assembly. J Biol Chem. 2001;276(27):24751–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH. Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Physiol. 1996;168(2):305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tablin F, Wolkers WF, Walker NJ, Oliver AE, Tsvetkova NM, Gousset K, et al. Membrane reorganization during chilling: implications for long-term stabilization of platelets. Cryobiology. 2001;43(2):114–23.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, et al. The clearance mechanism of chilled blood platelets. Cell. 2003;112(1):87–97.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bode AP. Preclinical testing of lyophilized platelets as a product for transfusion medicine. Transfus Sci. 1995;16(2):183–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cohen P, Gardner FH. Platelet preservation. II. Preservation of canine platelet concentrates by freezing in solutions of glycerol plasma. J Clin Invest. 1962;41:10–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Djerassi I, Roy A. A method for preservation of viable platelets: combined effects of sugars and dimethylsulfoxide. Blood. 1963;22:703–17.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Djerassi I, Roy A, Kim J, Cavins J. Dimethylacetamide, a new cryoprotective agent for platelets. Transfusion. 1971;11(2):72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Davis RB. Ultrastructural characteristics of freeze-dried human blood platelets. Am J Pathol. 1972;68(2):303–16.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Iossifides I, Geisler P, Eichman MF, Tocantins LM. Preservation of the clot-retracting activity of platelets by freezing in dimethylsulfoxide and plasma. Transfusion. 1963;3:167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Djerassi I, Farber S, Roy A, Cavins J. Preparation and in vivo circulation of human platelets preserved with combined dimethylsulfoxide and dextrose. Transfusion. 1966;6(6):572–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Djerassi I, Roy A, Alvarado J. Preservation of morphological integrity and clot retraction activity of human platelets after freezing. Thromb Diath Haemorrh. 1964;11:222–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Geisler PH, Iossifides IA, Eichman MF. Preservation of the lactic dehydrogenase activity of platelets by freezing in dimethylsulfoxide and plasma. Blood. 1964;24:761–4.PubMedGoogle Scholar
  32. 32.
    Spector JI, Skrabut EM, Valeri CR. Oxygen consumption, platelet aggregation and release reactions in platelets freeze-preserved with dimethylsulfoxide. Transfusion. 1977;17(2):99–109.PubMedCrossRefGoogle Scholar
  33. 33.
    Pfisterer H, Weber F, Michlmayr G. In vivo survival of platelet concentrates following rapid freezing and thawing. Cryobiology. 1969;5(6):379–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Pfisterer H, Michlmayr G, Weber F. In vivo survival of rabbit platelets by rapid freezing and thawing. Blut. 1969;19(6):347–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Schiffer CA, Aisner J, Wiernik PH. Frozen autologous platelet transfusion for patients with leukemia. N Engl J Med. 1978;299(1):7–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffer CA, Buchholz DH, Aisner J, Wolff JH, Wiernik PH. Frozen autologous platelets in the supportive care of patients with leukemia. Transfusion. 1976;16(4):321–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Daly PA, Schiffer CA, Aisner J, Wiernik PH. Successful transfusion of platelets cryopreserved for more than 3 years. Blood. 1979;54(5):1023–7.PubMedGoogle Scholar
  38. 38.
    Schiffer CA, Aisner J, Wiernik PH. Clinical experience with transfusion of cryopreserved platelets. Br J Haematol. 1976;34(3):377–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Schiffer CA, Aisner J, Dutcher JP. Platelet cryopreservation using dimethyl sulfoxide. Ann N Y Acad Sci. 1983;411:161–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Dumont LJ, Slichter SJ, Reade MC. Cryopreserved platelets: frozen in a logjam? Transfusion. 2014;54(8):1907–10.PubMedCrossRefGoogle Scholar
  41. 41.
  42. 42.
    Spitalnik SL, Triulzi D, Devine DV, Dzik WH, Eder AF, Gernsheimer T, et al. 2015 proceedings of the National Heart, Lung, and Blood Institute’s state of the science in transfusion medicine symposium. Transfusion. 2015;55(9):2282–90.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mulcahy AW, Kapinos KA, Briscombe B, Uscher-Pines L, Chaturvedi R, Case SR, et al. Toward a sustainable blood supply in the united states: an analysis of the current system and alternatives for the future. Santa Monica: RAND Corporation; 2016. Available from:
  44. 44.
    Dunbar NM. Modern solutions and future challenges for platelet inventory management. Transfusion. 2015;55(9):2053–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ellingson KD, Sapiano MRP, Haass KA, Savinkina AA, Baker ML, Chung KW, et al. Continued decline in blood collection and transfusion in the United States-2015. Transfusion. 2017;57(Suppl 2):1588–98.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Valeri CR. Blood components in the treatment of acute blood loss: use of freeze-preserved red cells, platelets, and plasma proteins. Anesth Analg. 1975;54(1):1–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Valeri CR, Feingold H, Marchionni LD. A simple method for freezing human platelets using 6 percent dimethylsulfoxide and storage at −80 degrees C. Blood. 1974;43(1):131–6.PubMedGoogle Scholar
  48. 48.
    Valeri CR, Macgregor H, Barnard MR, Summaria L, Michelson AD, Ragno G. In vitro testing of fresh and lyophilized reconstituted human and baboon platelets. Transfusion. 2004;44(10):1505–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Valeri CR, MacGregor H, Barnard MR, Summaria L, Michelson AD, Ragno G. Survival of baboon biotin-X-N-hydroxysuccinimide and (111)In-oxine-labelled autologous fresh and lyophilized reconstituted platelets. Vox Sang. 2005;88(2):122–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Valeri CR, Feingold H, Melaragno AJ, Vecchione JJ. Cryopreservation of dog platelets with dimethyl sulfoxide: therapeutic effectiveness of cryopreserved platelets in the treatment of thrombocytopenic dogs, and the effect of platelet storage at −80 degrees C. Cryobiology. 1986;23(5):387–94.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Spector JI, Flor WJ, Valeri CR. Ultrastructural alterations and phagocytic function of cryopreserved platelets. Transfusion. 1979;19(3):307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Handin RI, Valeri CR. Improved viability of previously frozen platelets. Blood. 1972;40(4):509–13.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Khuri SF, Healey N, MacGregor H, Barnard MR, Szymanski IO, Birjiniuk V, et al. Comparison of the effects of transfusions of cryopreserved and liquid-preserved platelets on hemostasis and blood loss after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1999;117(1):172–83; discussion 83–4.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Valeri CR, Ragno G, Khuri S. Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at −80 degrees C without postthaw processing. Transfusion. 2005;45(12):1890–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Noorman F, van Dongen TT, Plat MJ, Badloe JF, Hess JR, Hoencamp R. Transfusion: −80 degrees C frozen blood products are safe and effective in military casualty care. PLoS One. 2016;11(12):e0168401.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hoencamp R, Vermetten E, Tan EC, Putter H, Leenen LP, Hamming JF. Systematic review of the prevalence and characteristics of battle casualties from NATO coalition forces in Iraq and Afghanistan. Injury. 2014;45(7):1028–34.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Reade MC, Marks DC, Johnson L, Irving DO, Holley AD. Frozen platelets for rural Australia: the CLIP trial. Anaesth Intensive Care. 2013;41(6):804–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Rowe DJ. Frozen platelets for rural Australia-when, if not. Anaesth Intensive Care. 2013;41(4):549–50.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    ARC. Frozen Platelets Clinical Trial. Australian Red Cross Blood Service; N/A [Web page briefly describing ARC collaboration with the CLIP Trial]. Available from:
  60. 60.
    Authorities TCoA. The factors affecting the supply of health services and medical professionals in rural areas. Submission to the Senate Standing Committee on Community Affairs 2011 [cited 2018 5/8/2018]. Available from:
  61. 61.
    Pidcoke HF, Spinella PC, Ramasubramanian AK, Strandenes G, Hervig T, Ness PM, et al. Refrigerated platelets for the treatment of acute bleeding: a review of the literature and reexamination of current standards. Shock. 2014;41(Suppl 1):51–3.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Holley A, Marks DC, Johnson L, Reade MC, Badloe JF, Noorman F. Frozen blood products: clinically effective and potentially ideal for remote Australia. Anaesth Intensive Care. 2013;41(1):10–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Johnson L, Reid S, Tan S, Vidovic D, Marks DC. PAS-G supports platelet reconstitution after cryopreservation in the absence of plasma. Transfusion. 2013;53(10):2268–77.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Johnson L, Tan S, Jenkins E, Wood B, Marks DC. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets. Transfusion. 2018;58(4):927–37.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Johnson L, Tan S, Wood B, Davis A, Marks DC. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion. 2016;56(7):1807–18.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion. 2017;57(12):2845–57.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dumont LJ, Cancelas JA, Dumont DF, Siegel AH, Szczepiorkowski ZM, Rugg N, et al. A randomized controlled trial evaluating recovery and survival of 6% dimethyl sulfoxide-frozen autologous platelets in healthy volunteers. Transfusion. 2013;53(1):128–37.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Cid J, Escolar G, Galan A, Lopez-Vilchez I, Molina P, Diaz-Ricart M, et al. In vitro evaluation of the hemostatic effectiveness of cryopreserved platelets. Transfusion. 2016;56(3):580–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Collaborative BEST. Platelet radiolabeling procedure. Transfusion. 2006;46(Suppl):59S–66S.Google Scholar
  70. 70.
    Slichter SJ, Jones M, Ransom J, Gettinger I, Jones MK, Christoffel T, et al. Review of in vivo studies of dimethyl sulfoxide cryopreserved platelets. Transfus Med Rev. 2014;28(4):212–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Slichter SJ, Dumont L, Cancelas JA, Jones M, Gernsheimer T, Szczepiorkowski ZM, et al. Safety and efficacy of cryopreserved platelets in bleeding thrombocytopenic patients. Transfusion. 2018;58:2129–38. (in press).PubMedCrossRefGoogle Scholar
  72. 72.
    Read MS, Reddick RL, Bode AP, Bellinger DA, Nichols TC, Taylor K, et al. Preservation of hemostatic and structural properties of rehydrated lyophilized platelets: potential for long-term storage of dried platelets for transfusion. Proc Natl Acad Sci U S A. 1995;92(2):397–401.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bode AP, Read MS, Reddick RL. Activation and adherence of lyophilized human platelets on canine vessel strips in the Baumgartner perfusion chamber. J Lab Clin Med. 1999;133(2):200–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Bode AP, Read MS. Lyophilized platelets: continued development. Transfus Sci. 2000;22(1–2):99–105.PubMedCrossRefGoogle Scholar
  75. 75.
    Fischer TH, Wolberg AS, Bode AP, Nichols TC. The interaction of factor VIIa with rehydrated, lyophilized platelets. Platelets. 2008;19(3):182–91.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fischer TH, Bode AP, Parker BR, Russell KE, Bender DE, Ramer JK, et al. Primary and secondary hemostatic functionalities of rehydrated, lyophilized platelets. Transfusion. 2006;46(11):1943–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Hawksworth JS, Elster EA, Fryer D, Sheppard F, Morthole V, Krishnamurthy G, et al. Evaluation of lyophilized platelets as an infusible hemostatic agent in experimental non-compressible hemorrhage in swine. J Thromb Haemost. 2009;7(10):1663–71.PubMedCrossRefGoogle Scholar
  78. 78.
    Davidow EB, Brainard B, Martin LG, Beal MW, Bode A, Ford MJ, et al. Use of fresh platelet concentrate or lyophilized platelets in thrombocytopenic dogs with clinical signs of hemorrhage: a preliminary trial in 37 dogs. J Vet Emerg Crit Care (San Antonio). 2012;22(1):116–25.CrossRefGoogle Scholar
  79. 79.
    Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42(2):79–87.PubMedCrossRefGoogle Scholar
  80. 80.
    Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–99.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Crowe LM, Crowe JH. Anhydrobiosis: a strategy for survival. Adv Space Res. 1992;12(4):239–47.PubMedCrossRefGoogle Scholar
  82. 82.
    Crowe JH. Anhydrobiosis: an unsolved problem. Plant Cell Environ. 2014;37(7):1491–3.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Joshi NV, Raftis JB, Lucking AJ, Hunter AH, Millar M, Fitzpatrick M, et al. Lyophilised reconstituted human platelets increase thrombus formation in a clinical ex vivo model of deep arterial injury. Thromb Haemost. 2012;108(1):176–82. Scholar
  84. 84.
    Getz TM, Bode AP, Hale AS, Stanton M, Johnson M, Fitzpatrick GM. Safety evaluation of lyophilized canine platelets in a model of coronary artery bypass graft (CABG). Transfusion. 2017;57(Supplement S3):21A.Google Scholar
  85. 85.
    Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion. 2013;53(Suppl 1):100S–6S.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fitzpatrick GM, Vibhudatta A, Agashe H, Dee J. Trehalose stabilized freeze dried human platelets, thrombosomes, reduce blood loss in thrombocytopenic rabbit ear bleed model by as much as 89.5%. Vox Sang. 2010;99(Suppl 1 P-0452):261.Google Scholar
  87. 87.
    Jobes D, Wolfe Y, O’Neill D, Calder J, Jones L, Sesok-Pizzini D, et al. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Inaba K, Barmparas G, Rhee P, Branco BC, Fitzpatrick M, Okoye OT, et al. Dried platelets in a swine model of liver injury. Shock. 2014;41(5):429–34.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Odom SR, Howell MD, Silva GS, Nielsen VM, Gupta A, Shapiro NI, et al. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg. 2013;74(4):999–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Vostal JG. Efficacy evaluation of current and future platelet transfusion products. J Trauma. 2006;60(6 Suppl):S78–82.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dyer C, Alquist CR, Cole-Sinclair M, Curnow E, Dunbar NM, Estcourt LJ, et al. A multicentred study to validate a consensus bleeding assessment tool developed by the biomedical excellence for safer transfusion collaborative for use in patients with haematological malignancy. Vox Sang. 2018;113(3):251–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Heather Pidcoke
    • 1
  • Kathleen Kelly
    • 2
  • G. Michael Fitzpatrick
    • 3
  • Larry J. Dumont
    • 2
    • 4
    • 5
    Email author
  1. 1.Department of Clinical AffairsCellphire, Inc.RockvilleUSA
  2. 2.Vitalant Research Institute (VRI)DenverUSA
  3. 3.Clinical Research and DevelopmentCellphire, Inc.RockvilleUSA
  4. 4.The Geisel School of Medicine at DartmouthLebanonUSA
  5. 5.University of Colorado School of MedicineDenverUSA

Personalised recommendations