Advertisement

Damage Control Resuscitation for Severe Traumatic Brain Injury

  • Aaron M. Williams
  • Geoffrey Ling
  • Hasan B. AlamEmail author
Chapter

Abstract

Life-threatening hemorrhage (LTH) and traumatic brain injury (TBI) remain the leading causes of preventable deaths in trauma. Damage control resuscitation (DCR) has become a highly popular treatment strategy for LTH. Although such a management strategy is well-established for LTH, alternative treatment strategies and management considerations should be applied to patients with concurrent severe TBI. As such, DCR prioritizing hypotensive resuscitation may be contraindicated in this setting. The presence of severe TBI, in addition to LTH, presents a unique clinical scenario in which providers should be well-versed. Severe TBI alone can contribute to widespread impairment of hemostasis, endothelial function, coagulation, and immune function. In the setting of LTH, severe TBI can even contribute to potentiation of the lethal triad—acidosis, coagulopathy, and hypothermia—in trauma. To improve patient outcomes, pre- and in-hospital care of patients with LTH and severe TBI requires avoiding hypoxia and hypotension to minimize secondary brain injury and optimizing intracranial hemodynamics. Although several resuscitative fluids and strategies exist, there is no consensus for the optimal resuscitative fluid for patients with severe TBI and LTH. Each strategy has its own benefits and limitations, which providers should consider. In recent years, several novel treatment agents, including valproic acid (VPA), have demonstrated great promise in improving outcomes in models of concurrent LTH and severe TBI. However, further testing of these strategies and exploration of additional treatment options for patients with LTH and severe TBI are warranted.

Keywords

Damage control resuscitation Traumatic brain injury Life-threatening hemorrhage Resuscitation principles Crystalloids Colloids Novel therapeutic strategies in traumatic brain injury 

References

  1. 1.
    Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci. 2014;32(2):337–65.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Faul MXL, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta: US Department of Health and Human Services, CDC; 2010.CrossRefGoogle Scholar
  4. 4.
    Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Alam HB. Trauma care: finding a better way. PLoS Med. 2017;14(7):e1002350.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maegele M, Schochl H, Menovsky T, Marechal H, Marklund N, Buki A, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017;16(8):630–47.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sillesen M. Coagulation changes following traumatic brain injury and shock. Dan Med J. 2014;61(12):B4974.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Jiang R, Liu L, Watkins T, Zhang F, Dong JF. Traumatic brain injury-associated coagulopathy. J Neurotrauma. 2012;29(17):2597–605.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rhind SG, Crnko NT, Baker AJ, Morrison LJ, Shek PN, Scarpelini S, et al. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J Neuroinflammation. 2010;7:5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Duchesne JC, McSwain NE Jr, Cotton BA, Hunt JP, Dellavolpe J, Lafaro K, et al. Damage control resuscitation: the new face of damage control. J Trauma. 2010;69(4):976–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000;49(5):969–78.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.CrossRefGoogle Scholar
  13. 13.
    Gurney JM, Spinella PC. Blood transfusion management in the severely bleeding military patient. Curr Opin Anaesthesiol. 2018;31(2):207–14.Google Scholar
  14. 14.
    Genet GF, Johansson PI, Meyer MA, Solbeck S, Sorensen AM, Larsen CF, et al. Trauma-induced coagulopathy: standard coagulation tests, biomarkers of coagulopathy, and endothelial damage in patients with traumatic brain injury. J Neurotrauma. 2013;30(4):301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    de Oliveira Manoel AL, Neto AC, Veigas PV, Rizoli S. Traumatic brain injury associated coagulopathy. Neurocrit Care. 2015;22(1):34–44.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128(8):1043–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Yuan Q, Sun YR, Wu X, Yu J, Li ZQ, Du ZY, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis. J Neurotrauma. 2016;33(14):1279–91.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75; discussion 75.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hoyt DB. A clinical review of bleeding dilemmas in trauma. Semin Hematol. 2004;41(1 Suppl 1):40–3.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Castellino FJ, Chapman MP, Donahue DL, Thomas S, Moore EE, Wohlauer MV, et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg. 2014;76(5):1169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cardenas JC, Wade CE, Holcomb JB. Mechanisms of trauma-induced coagulopathy. Curr Opin Hematol. 2014;21(5):404–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Atefi G, Aisiku O, Shapiro N, Hauser C, Dalle Lucca J, Flaumenhaft R, et al. Complement activation in trauma patients alters platelet function. Shock. 2016;46(3 Suppl 1):83–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Di Battista AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT, et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock. 2016;46(3 Suppl 1):96–103.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Laroche M, Kutcher ME, Huang MC, Cohen MJ, Manley GT. Coagulopathy after traumatic brain injury. Neurosurgery. 2012;70(6):1334–45.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Maegele M. The coagulopathy of trauma. Eur J Trauma Emerg Surg. 2014;40(2):113–26.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock. 2014;41(Suppl 1):21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    McCully SP, Schreiber MA. Traumatic brain injury and its effect on coagulopathy. Semin Thromb Hemost. 2013;39(8):896–901.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Epstein DS, Mitra B, O’Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee TH, Hampton DA, Diggs BS, McCully SP, Kutcher M, Redick BJ, et al. Traumatic brain injury is not associated with coagulopathy out of proportion to injury in other body regions. J Trauma Acute Care Surg. 2014;77(1):67–72; discussionPubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29(1):19–31.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    De Oliveira CO, Reimer AG, Da Rocha AB, Grivicich I, Schneider RF, Roisenberg I, et al. Plasma von Willebrand factor levels correlate with clinical outcome of severe traumatic brain injury. J Neurotrauma. 2007;24(8):1331–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu D, Mahmood A, Goussev A, Qu C, Zhang ZG, Chopp M. Delayed thrombosis after traumatic brain injury in rats. J Neurotrauma. 2004;21(12):1756–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Deng Y, Fang W, Li Y, Cen J, Fang F, Lv P, et al. Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur J Pharmacol. 2009;616(1–3):43–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185(9):5628–36.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118(9):1392–408.PubMedCrossRefGoogle Scholar
  38. 38.
    Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg. 2009;108(5):1447–52.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hoffman M, Monroe DM. Tissue factor in brain is not saturated with factor VIIa: implications for factor VIIa dosing in intracerebral hemorrhage. Stroke. 2009;40(8):2882–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Pathak A, Dutta S, Marwaha N, Singh D, Varma N, Mathuriya SN. Change in tissue thromboplastin content of brain following trauma. Neurol India. 2005;53(2):178–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Tian HL, Chen H, Wu BS, Cao HL, Xu T, Hu J, et al. D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg Rev. 2010;33(3):359–65; discussion 65–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Tong WS, Zheng P, Zeng JS, Guo YJ, Yang WJ, Li GY, et al. Prognosis analysis and risk factors related to progressive intracranial haemorrhage in patients with acute traumatic brain injury. Brain Inj. 2012;26(9):1136–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Hijazi N, Abu Fanne R, Abramovitch R, Yarovoi S, Higazi M, Abdeen S, et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood. 2015;125(16):2558–67.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016;13:40.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sillesen M, Rasmussen LS, Jin G, Jepsen CH, Imam A, Hwabejire JO, et al. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg. 2014;76(1):12–9; discussion 9–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Hess JR, Lawson JH. The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma. 2006;60(6 Suppl):S12–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Martini WZ. Coagulopathy by hypothermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma. 2009;67(1):202–8; discussion 8–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Meng ZH, Wolberg AS, Monroe DM 3rd, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55(5):886–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee JC, Rittenhouse K, Bupp K, Gross B, Rogers A, Rogers FB, et al. An analysis of Brain Trauma Foundation traumatic brain injury guideline compliance and patient outcome. Injury. 2015;46(5):854–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Stiver SI, Manley GT. Prehospital management of traumatic brain injury. Neurosurg Focus. 2008;25(4):E5.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wijayatilake DS, Jigajinni SV, Sherren PB. Traumatic brain injury: physiological targets for clinical practice in the prehospital setting and on the Neuro-ICU. Curr Opin Anaesthesiol. 2015;28(5):517–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Chi JH, Knudson MM, Vassar MJ, McCarthy MC, Shapiro MB, Mallet S, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma. 2006;61(5):1134–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Tohme S, Delhumeau C, Zuercher M, Haller G, Walder B. Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study. Scand J Trauma Resusc Emerg Med. 2014;22:1.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014;31(7):618–29.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, Fourth Edition. Neurosurgery. 2017;80(1):6–15.Google Scholar
  58. 58.
    Rincon F, Kang J, Vibbert M, Urtecho J, Athar MK, Jallo J. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 2014;85(7):799–805.PubMedCrossRefGoogle Scholar
  59. 59.
    Caulfield EV, Dutton RP, Floccare DJ, Stansbury LG, Scalea TM. Prehospital hypocapnia and poor outcome after severe traumatic brain injury. J Trauma. 2009;66(6):1577–82; discussion 83.PubMedCrossRefGoogle Scholar
  60. 60.
    Davis DP, Peay J, Sise MJ, Kennedy F, Simon F, Tominaga G, et al. Prehospital airway and ventilation management: a trauma score and injury severity score-based analysis. J Trauma. 2010;69(2):294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Dumont TM, Visioni AJ, Rughani AI, Tranmer BI, Crookes B. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma. 2010;27(7):1233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med. 2010;38(5):1348–59.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Pearson WS, Ovalle F Jr, Faul M, Sasser SM. A review of traumatic brain injury trauma center visits meeting physiologic criteria from The American College of Surgeons Committee on Trauma/Centers for Disease Control and Prevention Field Triage Guidelines. Prehosp Emerg Care. 2012;16(3):323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Berry C, Ley EJ, Bukur M, Malinoski D, Margulies DR, Mirocha J, et al. Redefining hypotension in traumatic brain injury. Injury. 2012;43(11):1833–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Brenner M, Stein DM, Hu PF, Aarabi B, Sheth K, Scalea TM. Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury. J Trauma Acute Care Surg. 2012;72(5):1135–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Murray GD, Butcher I, McHugh GS, Lu J, Mushkudiani NA, Maas AI, et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):329–37.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mangat HS, Chiu YL, Gerber LM, Alimi M, Ghajar J, Hartl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;122(1):202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bulger EM, May S, Brasel KJ, Schreiber M, Kerby JD, Tisherman SA, et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010;304(13):1455–64.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rickard AC, Smith JE, Newell P, Bailey A, Kehoe A, Mann C. Salt or sugar for your injured brain? A meta-analysis of randomised controlled trials of mannitol versus hypertonic sodium solutions to manage raised intracranial pressure in traumatic brain injury. Emerg Med J: EMJ. 2014;31(8):679–83.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wakai A, McCabe A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev. 2013;(8):Cd001049.Google Scholar
  71. 71.
    Bukur M, Hadjibashi AA, Ley EJ, Malinoski D, Singer M, Barmparas G, et al. Impact of prehospital hypothermia on transfusion requirements and outcomes. J Trauma Acute Care Surg. 2012;73(5):1195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bukur M, Kurtovic S, Berry C, Tanios M, Ley EJ, Salim A. Pre-hospital hypothermia is not associated with increased survival after traumatic brain injury. J Surg Res. 2012;175(1):24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20(1):128.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pinaud M, Lelausque JN, Chetanneau A, Fauchoux N, Menegalli D, Souron R. Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology. 1990;73(3):404–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Farrell D, Bendo AA. Perioperative management of severe traumatic brain injury: what is new? Curr Anesthesiol Rep. 2018;8(3):279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4(1):40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain: J Neurol. 2012;135(Pt 8):2390–8.CrossRefGoogle Scholar
  79. 79.
    Jin J, Gong K, Zou X, Wang R, Lin Q, Chen J. The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci Lett. 2013;539:11–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 2018;12:845–53.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kazim SF, Shamim MS, Tahir MZ, Enam SA, Waheed S. Management of penetrating brain injury. J Emerg Trauma Shock. 2011;4(3):395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Griesdale DE, McEwen J, Kurth T, Chittock DR. External ventricular drains and mortality in patients with severe traumatic brain injury. Can J Neurol Sci. 2010;37(1):43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990;323(8):497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jones KE, Puccio AM, Harshman KJ, Falcione B, Benedict N, Jankowitz BT, et al. Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury. Neurosurg Focus. 2008;25(4):E3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hartl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg. 2008;109(1):50–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Chourdakis M, Kraus MM, Tzellos T, Sardeli C, Peftoulidou M, Vassilakos D, et al. Effect of early compared with delayed enteral nutrition on endocrine function in patients with traumatic brain injury: an open-labeled randomized trial. JPEN J Parenter Enteral Nutr. 2012;36(1):108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 2011;10(2):131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev. 2005;(1):Cd000196.Google Scholar
  91. 91.
    Peiniger S, Nienaber U, Lefering R, Braun M, Wafaisade A, Wutzler S, et al. Balanced massive transfusion ratios in multiple injury patients with traumatic brain injury. Crit Care. 2011;15(1):R68.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Boldt J. Fluid choice for resuscitation of the trauma patient: a review of the physiological, pharmacological, and clinical evidence. Can J Anaesth. 2004;51(5):500–13.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Butler F. Fluid resuscitation in tactical combat casualty care: brief history and current status. J Trauma. 2011;70(5 Suppl):S11–2.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    ATLS Subcommittee; American College of Surgeons’ Committee on Trauma; International ATLS Working Group. Advanced trauma life support (ATLS(R)): the ninth edition. J Trauma Acute Care Surg. 2013;74(5):1363–6.Google Scholar
  95. 95.
    Rowell SE, Fair KA, Barbosa RR, Watters JM, Bulger EM, Holcomb JB, et al. The impact of pre-hospital administration of lactated ringer’s solution versus normal saline in patients with traumatic brain injury. J Neurotrauma. 2016;33(11):1054–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Watters JM, Brundage SI, Todd SR, Zautke NA, Stefater JA, Lam JC, et al. Resuscitation with lactated ringer’s does not increase inflammatory response in a Swine model of uncontrolled hemorrhagic shock. Shock. 2004;22(3):283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Schreiber MA. The use of normal saline for resuscitation in trauma. J Trauma. 2011;70(5 Suppl):S13–4.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Bradley C. Crystalloid, colloid or small volume resuscitation? Intensive Crit Care Nurs. 2001;17(5):304–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Funk W, Baldinger V. Microcirculatory perfusion during volume therapy. A comparative study using crystalloid or colloid in awake animals. Anesthesiology. 1995;82(4):975–82.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Butler FK, Holcomb JB, Schreiber MA, Kotwal RS, Jenkins DA, Champion HR, et al. Fluid resuscitation for hemorrhagic shock in tactical combat casualty care: TCCC guidelines change 14-01-2 June 2014. J Spec Oper Med. 2014;14(3):13–38.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30(7):512–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gantner D, Moore EM, Cooper DJ. Intravenous fluids in traumatic brain injury: what’s the solution? Curr Opin Crit Care. 2014;20(4):385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jin G, Duggan M, Imam A, Demoya MA, Sillesen M, Hwabejire J, et al. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury. J Trauma Acute Care Surg. 2012;73(6):1461–70.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chorny I, Bsorai R, Artru AA, Talmor D, Benkoviz V, Roytblat L, et al. Albumin or hetastarch improves neurological outcome and decreases volume of brain tissue necrosis but not brain edema following closed-head trauma in rats. J Neurosurg Anesthesiol. 1999;11(4):273–81.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Holcomb JB. Damage control resuscitation. J Trauma. 2007;62(6 Suppl):S36–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Reddy GD, Gopinath S, Robertson CS. Transfusion in traumatic brain injury. Curr Treat Options Neurol. 2015;17(11):46.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Utter GH, Shahlaie K, Zwienenberg-Lee M, Muizelaar JP. Anemia in the setting of traumatic brain injury: the arguments for and against liberal transfusion. J Neurotrauma. 2011;28(1):155–65.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Salim A, Hadjizacharia P, DuBose J, Brown C, Inaba K, Chan L, et al. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008;207(3):398–406.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Oddo M, Levine JM, Kumar M, Iglesias K, Frangos S, Maloney-Wilensky E, et al. Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med. 2012;38(9):1497–504.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312(1):36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Elterman J, Brasel K, Brown S, Bulger E, Christenson J, Kerby JD, et al. Transfusion of red blood cells in patients with a prehospital Glasgow Coma Scale score of 8 or less and no evidence of shock is associated with worse outcomes. J Trauma Acute Care Surg. 2013;75(1):8–14; discussionPubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Vedantam A, Yamal JM, Rubin ML, Robertson CS, Gopinath SP. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. J Neurosurg. 2016;125(5):1229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Erber WN, Perry DJ. Plasma and plasma products in the treatment of massive haemorrhage. Best Pract Res Clin Haematol. 2006;19(1):97–112.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Halaweish I, Bambakidis T, He W, Linzel D, Chang Z, Srinivasan A, et al. Early resuscitation with fresh frozen plasma for traumatic brain injury combined with hemorrhagic shock improves neurologic recovery. J Am Coll Surg. 2015;220(5):809–19.CrossRefGoogle Scholar
  119. 119.
    Georgoff PE, Nikolian VC, Halaweish I, Chtraklin K, Bruhn PJ, Eidy H, et al. Resuscitation with lyophilized plasma is safe and improves neurological recovery in a long-term survival model of swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J Neurotrauma. 2017;34(13):2167–75.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Hwabejire JO, Imam AM, Jin G, Liu B, Li Y, Sillesen M, et al. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury. J Trauma Acute Care Surg. 2013;75(6):968–74; discussion 74–5.CrossRefGoogle Scholar
  121. 121.
    Potter DR, Baimukanova G, Keating SM, Deng X, Chu JA, Gibb SL, et al. Fresh frozen plasma and spray-dried plasma mitigate pulmonary vascular permeability and inflammation in hemorrhagic shock. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S7–s17.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Peng Z, Pati S, Potter D, Brown R, Holcomb JB, Grill R, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock. 2013;40(3):195–202.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sillesen M, Bambakidis T, Dekker SE, Li Y, Alam HB. Fresh frozen plasma modulates brain gene expression in a swine model of traumatic brain injury and shock: a network analysis. J Am Coll Surg. 2017;224(1):49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Brasel KJ, Vercruysse G, Spinella PC, Wade CE, Blackbourne LH, Borgman MA, et al. The association of blood component use ratios with the survival of massively transfused trauma patients with and without severe brain injury. J Trauma. 2011;71(2 Suppl 3):S343–52.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Anglin CO, Spence JS, Warner MA, Paliotta C, Harper C, Moore C, et al. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses. J Neurosurg. 2013;118(3):676–86.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Shah S, Coppolino K, Menocha S, Beceiro S, Nateri J, Spinella PC, et al. Immunomodulatory effects of plasma products on monocyte function in vitro. J Trauma Acute Care Surg. 2018;84(6S Suppl 1):S47–s53.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Spinella PC, Frazier E, Pidcoke HF, Dietzen DJ, Pati S, Gorkun O, et al. All plasma products are not created equal: characterizing differences between plasma products. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S18–25.CrossRefGoogle Scholar
  128. 128.
    Jokar TO, Khalil M, Rhee P, Kulvatunyou N, Pandit V, O’Keeffe T, et al. Ratio-based resuscitation in trauma patients with traumatic brain injury: is there a similar effect? Am Surg. 2016;82(3):271–7.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Stein DM, Dutton RP, Kramer ME, Handley C, Scalea TM. Recombinant factor VIIa: decreasing time to intervention in coagulopathic patients with severe traumatic brain injury. J Trauma. 2008;64(3):620–7; discussion 7–8.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rhodes KE, Raivich G, Fawcett JW. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience. 2006;140(1):87–100.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Spinella PC, Cap AP. Whole blood: back to the future. Curr Opin Hematol. 2016;23(6):536–42.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66(4 Suppl):S69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bjerkvig CK, Strandenes G, Eliassen HS, Spinella PC, Fosse TK, Cap AP, et al. Blood failure time to view blood as an organ: how oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion. 2016;56(Suppl 2):S182–9.CrossRefGoogle Scholar
  134. 134.
    Jobes D, Wolfe Y, O’Neill D, Calder J, Jones L, Sesok-Pizzini D, et al. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, et al. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion. 2013;53(Suppl 1):137s–49s.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Choi JW, Pai SH. Influence of storage temperature on the responsiveness of human platelets to agonists. Ann Clin Lab Sci. 2003;33(1):79–85.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Valeri CR. Circulation and hemostatic effectiveness of platelets stored at 4 C or 22 C: studies in aspirin-treated normal volunteers. Transfusion. 1976;16(1):20–3.PubMedCrossRefGoogle Scholar
  138. 138.
    Valeri CR. Hemostatic effectiveness of liquid-preserved and previously frozen human platelets. N Engl J Med. 1974;290(7):353–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Bux J. Transfusion-related acute lung injury (TRALI): a serious adverse event of blood transfusion. Vox Sang. 2005;89(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Stainsby D, Jones H, Asher D, Atterbury C, Boncinelli A, Brant L, et al. Serious hazards of transfusion: a decade of hemovigilance in the UK. Transfus Med Rev. 2006;20(4):273–82.PubMedCrossRefGoogle Scholar
  141. 141.
    Clifford L, Jia Q, Yadav H, Subramanian A, Wilson GA, Murphy SP, et al. Characterizing the epidemiology of perioperative transfusion-associated circulatory overload. Anesthesiology. 2015;122(1):21–8.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Dixon CE, Bramlett HM, Dietrich WD, Shear DA, Yan HQ, Deng-Bryant Y, et al. Cyclosporine treatment in traumatic brain injury: operation brain trauma therapy. J Neurotrauma. 2016;33(6):553–66.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Fukudome EY, Kochanek AR, Li Y, Smith EJ, Liu B, Kheirbek T, et al. Pharmacologic resuscitation promotes survival and attenuates hemorrhage-induced activation of extracellular signal-regulated kinase 1/2. J Surg Res. 2010;163(1):118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Alam HB, Hamwi KB, Duggan M, Fikry K, Lu J, Fukudome EY, et al. Hemostatic and pharmacologic resuscitation: results of a long-term survival study in a swine polytrauma model. J Trauma. 2011;70(3):636–45.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Halaweish I, Bambakidis T, Chang Z, Wei H, Liu B, Li Y, et al. Addition of low-dose valproic acid to saline resuscitation provides neuroprotection and improves long-term outcomes in a large animal model of combined traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg. 2015;79(6):911–9; discussion 9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Nikolian VC, Georgoff PE, Pai MP, Dehaney IS, Chtraklin K, Eidy H, et al. Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J Trauma Acute Care Surg. 2017;83:1066–73.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Nikolian VC, Dennahy IS, Higgins GA, Williams AM, Weykamp M, Georgoff PE, et al. Transcriptomic changes following valproic acid treatment promote neurogenesis and minimize secondary brain injury. J Trauma Acute Care Surg. 2018;84(3):459–65.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Nikolian VC, Dekker SE, Bambakidis T, Higgins GA, Dennahy IS, Georgoff PE, et al. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma. Crit Care Med. 2018;46(1):e59–66.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Georgoff PE, Nikolian VC, Higgins G, Chtraklin K, Eidy H, Ghandour MH, et al. Valproic acid induces prosurvival transcriptomic changes in swine subjected to traumatic injury and hemorrhagic shock. J Trauma Acute Care Surg. 2018;84(4):642–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Bambakidis T, Dekker SE, Halaweish I, Liu B, Nikolian VC, Georgoff PE, et al. Valproic acid modulates platelet and coagulation function ex vivo. Blood Coagul Fibrinolysis: Int J Haemostasis Thromb. 2017;28(6):479–84.CrossRefGoogle Scholar
  151. 151.
    Georgoff PE, Nikolian VC, Bonham T, Pai MP, Tafatia C, Halaweish I, et al. Safety and tolerability of intravenous valproic acid in healthy subjects: a phase I dose-escalation trial. Clin Pharmacokinet. 2018;57(2):209–19.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol. 2007;204(1):220–33.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain: J Neurol. 2012;135(Pt 4):1224–36.CrossRefGoogle Scholar
  154. 154.
    Wood H. Traumatic brain injury: Minocycline reduces microglial activation but increases neurodegeneration after TBI. Nat Rev Neurol. 2018;14(3):127.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain: J Neurol. 2018;141(2):459–71.CrossRefGoogle Scholar
  156. 156.
    Villapol S, Yaszemski AK, Logan TT, Sanchez-Lemus E, Saavedra JM, Symes AJ. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 2012;37(13):2817–29.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1–11.PubMedCrossRefGoogle Scholar
  158. 158.
    Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM. PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro. 2013;5(5):e00129.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Besson VC, Chen XR, Plotkine M, Marchand-Verrecchia C. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci Lett. 2005;388(1):7–12.PubMedCrossRefGoogle Scholar
  160. 160.
    Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, et al. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol. 2011;227(1):128–35.PubMedCrossRefGoogle Scholar
  161. 161.
    Thal SC, Heinemann M, Luh C, Pieter D, Werner C, Engelhard K. Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-gamma-independent mechanisms. J Neurotrauma. 2011;28(6):983–93.PubMedCrossRefGoogle Scholar
  162. 162.
    Liu M, Bachstetter AD, Cass WA, Lifshitz J, Bing G. Pioglitazone attenuates neuroinflammation and promotes dopaminergic neuronal survival in the nigrostriatal system of rats after diffuse brain injury. J Neurotrauma. 2017;34(2):414–22.PubMedCrossRefGoogle Scholar
  163. 163.
    Pilipovic K, Zupan Z, Dolenec P, Mrsic-Pelcic J, Zupan G. A single dose of PPARgamma agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2015;59:8–20.PubMedCrossRefGoogle Scholar
  164. 164.
    Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Sakowitz OW, Stover JF, Sarrafzadeh AS, Unterberg AW, Kiening KL. Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma. 2007;62(2):292–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature. 2001;413(6855):527–31.PubMedCrossRefGoogle Scholar
  167. 167.
    Mauler F, Hinz V, Augstein KH, Fassbender M, Horvath E. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res. 2003;989(1):99–111.PubMedCrossRefGoogle Scholar
  168. 168.
    Fujii M, Sherchan P, Krafft PR, Rolland WB, Soejima Y, Zhang JH. Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats. J Neurol Sci. 2014;342(1-2):101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Braun M, Khan ZT, Khan MB, Kumar M, Ward A, Achyut BR, et al. Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization. Brain Behav Immun. 2018;68:224–37.PubMedCrossRefGoogle Scholar
  170. 170.
    Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics. 2010;7(1):51–61.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Kulbe JR, Singh IN, Wang JA, Cebak JE, Hall ED. Continuous infusion of phenelzine, cyclosporine A, or their combination: evaluation of mitochondrial bioenergetics, oxidative damage, and cytoskeletal degradation following severe controlled cortical impact traumatic brain injury in rats. J Neurotrauma. 2018;35:1280–93.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sullivan PG, Thompson MB, Scheff SW. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol. 1999;160(1):226–34.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Buki A, Okonkwo DO, Povlishock JT. Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma. 1999;16(6):511–21.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Mazzeo AT, Alves OL, Gilman CB, Hayes RL, Tolias C, Niki Kunene K, et al. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir. 2008;150(10):1019–31; discussion 31.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Casili G, Campolo M, Paterniti I, Lanza M, Filippone A, Cuzzocrea S, et al. Dimethyl fumarate attenuates neuroinflammation and neurobehavioral deficits induced by experimental traumatic brain injury. J Neurotrauma. 2018;35:1437–51.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Bhatti J, Nascimento B, Akhtar U, Rhind SG, Tien H, Nathens A, et al. Systematic review of human and animal studies examining the efficacy and safety of N-Acetylcysteine (NAC) and N-Acetylcysteine Amide (NACA) in traumatic brain injury: impact on neurofunctional outcome and biomarkers of oxidative stress and inflammation. Front Neurol. 2017;8:744.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Pierce JD, Gupte R, Thimmesch A, Shen Q, Hiebert JB, Brooks WM, et al. Ubiquinol treatment for TBI in male rats: effects on mitochondrial integrity, injury severity, and neurometabolism. J Neurosci Res. 2018;96(6):1080–92.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Tortella FC, Leung LY. Traumatic brain injury and polytrauma in theaters of combat: the case for neurotrauma resuscitation? Shock. 2015;44(Suppl 1):17–26.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aaron M. Williams
    • 1
  • Geoffrey Ling
    • 2
  • Hasan B. Alam
    • 1
    Email author
  1. 1.Department of SurgeryUniversity of MichiganAnn ArborUSA
  2. 2.Department of NeurologyJohns Hopkins HospitalBaltimoreUSA

Personalised recommendations