Colloids and Crystalloids

  • Arvin C. Gee
  • Martin A. SchreiberEmail author


Provision of intravenous fluids has been a long-standing mainstay in the resuscitation of traumatically injured persons. There has been mounting evidence this fluid resuscitation carries a risk of harm, particularly when given in large volumes. Although current strategy is for hemostatic resuscitation with blood products, colloid and crystalloid fluids are still commonly used in damage control resuscitation. A colloid solution is one that contains a dissolved high molecular weight compound that is intended to increase the oncotic pressure in the vasculature and increase the circulating volume by drawing water from extracellular space. Colloid use has been largely limited to albumin, hetastarch, and dextran solutions. Crystalloid solutions contain electrolytes and some have small molecule buffers. Each of these fluids has its own set of risks and benefits and indications for use.


Colloids  Crystalloids  Hetastarch  Saline  Lactated Ringer’s 



Acute respiratory distress syndrome


Advanced Trauma Life Support


Damage control resuscitation


Federal Drug Administration


Hydroxyethyl starch


6% dextran-70 in 7.5% sodium chloride


Hypertonic saline




Lactated Ringer’s


Milli-equivalents per liter


Millimeters of mercury


Milli-osmoles per liter


Molecular weight


Normal saline


Red blood cell


Tricarboxylic acid


  1. 1.
    Van PY, Holcomb JB, Schreiber MA. Novel concepts for damage control resuscitation in trauma. Curr Opin Crit Care. 2017;23(6):498–502.CrossRefGoogle Scholar
  2. 2.
    Johansson PI, Stensballe J, Ostrowski SR. Current management of massive hemorrhage in trauma. Scand J Trauma Resusc Emerg Med. 2012;20:47.CrossRefGoogle Scholar
  3. 3.
    Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7.Google Scholar
  4. 4.
    Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.CrossRefGoogle Scholar
  5. 5.
    Stone HH, Strom PR, Mullins RJ. Management of the major coagulopathy with onset during laparotomy. Ann Surg. 1983;197(5):532–5.CrossRefGoogle Scholar
  6. 6.
    Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.Google Scholar
  7. 7.
    Bogert JN, Harvin JA, Cotton BA. Damage Control Resuscitation. J Intensive Care Med. 2016;31(3):177–86.CrossRefGoogle Scholar
  8. 8.
    Gattinoni L, Cressoni M, Brazzi L. Fluids in ARDS: from onset through recovery. Curr Opin Crit Care. 2014;20(4):373–7.CrossRefGoogle Scholar
  9. 9.
    Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.CrossRefGoogle Scholar
  10. 10.
    Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.CrossRefGoogle Scholar
  12. 12.
    Mitra S, Khandelwal P. Are all colloids same? How to select the right colloid? Indian J Anaesth. 2009;53(5):592–607.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Haase N, Perner A. Hydroxyethyl starch for resuscitation. Curr Opin Crit Care. 2013;19(4):321–5.CrossRefGoogle Scholar
  14. 14.
    Persson J, Grande PO. Volume expansion of albumin, gelatin, hydroxyethyl starch, saline and erythrocytes after haemorrhage in the rat. Intensive Care Med. 2005;31(2):296–301.CrossRefGoogle Scholar
  15. 15.
    Package Insert – Albumin (Human) 5%. In: Administration FaD, editor. 2006.Google Scholar
  16. 16.
    Finfer S. Reappraising the role of albumin for resuscitation. Curr Opin Crit Care. 2013;19(4):315–20.CrossRefGoogle Scholar
  17. 17.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRefGoogle Scholar
  18. 18.
    Investigators SS, Australian, New Zealand Intensive Care Society Clinical Trials G, Australian Red Cross Blood S, George Institute for International H, Myburgh J, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.CrossRefGoogle Scholar
  19. 19.
    Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30(7):512–8.CrossRefGoogle Scholar
  20. 20.
    Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567.Google Scholar
  21. 21.
    Orbegozo Cortes D, Santacruz C, Donadello K, Nobile L, Taccone FS. Colloids for fluid resuscitation: what is their role in patients with shock. Minerva Anestesiol. 2014;80(8):963–9.PubMedGoogle Scholar
  22. 22.
    Toyoda D, Shinoda S, Kotake Y. Pros and cons of tetrastarch solution for critically ill patients. J Intensive Care. 2014;2(1):23.CrossRefGoogle Scholar
  23. 23.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.CrossRefGoogle Scholar
  24. 24.
    Hospira. Hextend package insert. 2013.Google Scholar
  25. 25.
    Medical B. Hespan package insert. 2013.Google Scholar
  26. 26.
    Ogilvie MP, Ryan ML, Proctor KG. Hetastarch during initial resuscitation from trauma. J Trauma. 2011;70(5 Suppl):S19–21.CrossRefGoogle Scholar
  27. 27.
    Ogilvie MP, Pereira BM, McKenney MG, McMahon PJ, Manning RJ, Namias N, et al. First report on safety and efficacy of hetastarch solution for initial fluid resuscitation at a level 1 trauma center. J Am Coll Surg. 2010;210(5):870-80, 80–2.CrossRefGoogle Scholar
  28. 28.
    Medby C. Is there a place for crystalloids and colloids in remote damage control resuscitation? Shock. 2014;41(Suppl 1):47–50.CrossRefGoogle Scholar
  29. 29.
    Mattox KL, Maningas PA, Moore EE, Mateer JR, Marx JA, Aprahamian C, et al. Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension. The U.S.A. Multicenter Trial. Ann Surg. 1991;213(5):482–91.CrossRefGoogle Scholar
  30. 30.
    Bulger EM, May S, Kerby JD, Emerson S, Stiell IG, Schreiber MA, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.CrossRefGoogle Scholar
  31. 31.
    Sheppard FR, Mitchell TA, Macko AR, Fryer DM, Schaub LJ, Ozuna KM, et al. Whole blood and hextend: bookends of modern tactical combat casualty care field resuscitation and starting point for multi-functional resuscitation fluid development. J Trauma Acute Care Surg. 2017.Google Scholar
  32. 32.
    Milano R. Fluid resuscitation of the adult trauma patient: where have we been and where are we going? Nurs Clin North Am. 2017;52(2):237–47.CrossRefGoogle Scholar
  33. 33.
    Reddi BA. Why is saline so acidic (and does it really matter?). Int J Med Sci. 2013;10(6):747–50.CrossRefGoogle Scholar
  34. 34.
    Schreiber MA. The use of normal saline for resuscitation in trauma. J Trauma. 2011;70(5 Suppl):S13–4.CrossRefGoogle Scholar
  35. 35.
    Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit Care. 2016;20(1):315.CrossRefGoogle Scholar
  36. 36.
    Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.CrossRefGoogle Scholar
  37. 37.
    Bulger EM. 7.5% saline and 7.5% saline/6% dextran for hypovolemic shock. J Trauma. 2011;70(5 Suppl):S27–9.CrossRefGoogle Scholar
  38. 38.
    Coimbra R. 3% and 5% hypertonic saline. J Trauma. 2011;70(5 Suppl):S25–6.CrossRefGoogle Scholar
  39. 39.
    Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, et al. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA. 2004;291(11):1350–7.CrossRefGoogle Scholar
  40. 40.
    Koustova E, Stanton K, Gushchin V, Alam HB, Stegalkina S, Rhee PM. Effects of lactated Ringer’s solutions on human leukocytes. J Trauma. 2002;52(5):872–8.PubMedGoogle Scholar
  41. 41.
    de-Madaria E, Herrera-Marante I, Gonzalez-Camacho V, Bonjoch L, Quesada-Vazquez N, Almenta-Saavedra I, et al. Fluid resuscitation with lactated Ringer’s solution vs normal saline in acute pancreatitis: a triple-blind, randomized, controlled trial. United European Gastroenterol J. 2018;6(1):63–72.CrossRefGoogle Scholar
  42. 42.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRefGoogle Scholar
  43. 43.
    Joseph B, Zangbar B, Pandit V, Vercruysse G, Aziz H, Kulvatunyou N, et al. The conjoint effect of reduced crystalloid administration and decreased damage-control laparotomy use in the development of abdominal compartment syndrome. J Trauma Acute Care Surg. 2014;76(2):457–61.CrossRefGoogle Scholar
  44. 44.
    Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72(4):892–8.CrossRefGoogle Scholar
  45. 45.
    Zielinski MD, Jenkins D, Cotton BA, Inaba K, Vercruysse G, Coimbra R, et al. Adult respiratory distress syndrome risk factors for injured patients undergoing damage-control laparotomy: AAST multicenter post hoc analysis. J Trauma Acute Care Surg. 2014;77(6):886–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Trauma, Critical Care, and Acute Care SurgeryOregon Health and Science UniversityPortlandUSA

Personalised recommendations