Advertisement

Introduction

  • K. ShankarEmail author
  • Mohamed Elhoseny
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 564)

Abstract

WSN has a variety of multimedia-based information like image, video and secret data transmission process. For this process, the quality and the security of sensor nodes are critical. This chapter examined the background and difficulties of image security in WSN and Lightweight Cryptography (LWC) methods. Lightweight encryption strategy envelops quicker encryption and by analyzing the computing time, it expands the general lifetime of the sensor network. The fundamental reason for LWC in WSN is that its unique communication has been mixed or enciphered whereas the outcome is known as the cipher content or cryptogram. It is incorporated into block; the stream ciphers along with hash function are made to deliver the sturdy security for WSN image transmission process. Besides improving the nature of the images and security, the LWC optimization techniques also resemble PSO, GWO, and CSA with steganography, information data hiding and watermarking models. Toward the end of this chapter, the author discussed the vital performance measures utilized to analyze the security level of images in the network system.

Keywords

Wireless Sensor Network (WSN) Digital image Optimization Light Weight Cryptography (LWC) Application Security and ciphers 

References

  1. 1.
    Zhao, G., Yang, X., Zhou, B., & Wei, W. (2010, July). RSA-based digital image encryption algorithm in wireless sensor networks. In 2010 2nd International Conference on Signal Processing Systems (Vol. 2, pp. V2-640–643). IEEE.Google Scholar
  2. 2.
    Bisht, N., Thomas, J., & Thanikaiselvan, V. (2016, October). Implementation of security algorithm for wireless sensor networks over multimedia images. In 2016 International Conference on Communication and Electronics Systems (ICCES) (pp. 1–6). IEEE.Google Scholar
  3. 3.
    Mahrous, A. M., Moustafa, Y. M., & El-Ela, M. A. A. (2018). Physical characteristics and perceived security in urban parks: Investigation in the Egyptian context. Ain Shams Engineering Journal, 9(4), 3055–3066.CrossRefGoogle Scholar
  4. 4.
    Aminudin, N., Maseleno, A., Shankar, K., Hemalatha, S., Sathesh kumar, K., Fauzi1, et al. (2018). Nur algorithm on data encryption and decryption. International Journal of Engineering & Technology, 7(2.26), 109–118.CrossRefGoogle Scholar
  5. 5.
    Ilayaraja, M., Shankar, K., & Devika, G. (2017). A modified symmetric key cryptography method for secure data transmission. International Journal of Pure and Applied Mathematics, 116(10), 301–308.Google Scholar
  6. 6.
    Shankar, K., & Eswaran, P. (2016). An efficient image encryption technique based on optimized key generation in ECC using genetic algorithm. In Advances in intelligent systems and computing (Vol. 394, pp. 705–714). New York: Springer.Google Scholar
  7. 7.
    Shankar, K., Devika, G., & Ilayaraja, M. (2017). Secure and efficient multi-secret image sharing scheme based on Boolean operations and elliptic curve cryptography. International Journal of Pure and Applied Mathematics, 116(10), 293–300.Google Scholar
  8. 8.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 1–16.  https://doi.org/10.1007/s12652-017-0659-1.
  9. 9.
    Lee, S., Jeong, S., Chung, Y., Cho, H., & Pan, S. B. (2011, May). Secure and energy-efficient image transmission for wireless sensor networks. In 2011 IEEE Ninth International Symposium on Parallel and Distributed Processing with Applications Workshops (pp. 137–140). IEEE.Google Scholar
  10. 10.
    Rekha, R. N., & PrasadBabu, M. S. (2012). On some security issues in pervasive computing-light weight cryptography. International Journal on Computer Science and Engineering, 4(2), 267.Google Scholar
  11. 11.
    Sathesh Kumar, K., Shanka, K., Ilayaraja, M., & Rajesh, M. (2018). Sensitive data security in cloud computing aid of different encryption techniques. Journal of Advanced Research in Dynamical and Control Systems, 9, 2888–2899.Google Scholar
  12. 12.
    Gupta, D., Khanna, A., Shankar, K., Furtado, V., & Rodrigues, J. J. (2018). Efficient artificial fish swarm based clustering approach on mobility aware energy-efficient for MANET. Transactions on Emerging Telecommunications Technologies, 1–10.  https://doi.org/10.1002/ett.3524.
  13. 13.
    Bokhari, M. U., & Hassan, S. (2018). A comparative study on lightweight cryptography. In Cyber Security: Proceedings of CSI 2015 (pp. 69–79). Singapore: Springer.Google Scholar
  14. 14.
    Mary, I. R. P., Eswaran, P., & Shankar, K. (2018). Multi secret image sharing scheme based on DNA cryptography with XOR. International Journal of Pure and Applied Mathematics, 118(7), 393–398.Google Scholar
  15. 15.
    Manifavas, C., Hatzivasilis, G., Fysarakis, K., & Rantos, K. (2013). Lightweight cryptography for embedded systems—A comparative analysis. In Data privacy management and autonomous spontaneous security (pp. 333–349). Berlin, Heidelberg: Springer.Google Scholar
  16. 16.
    Sehrawat, D., & Gill, N. S. (2018). Lightweight block ciphers for IoT based applications: A review. Journal of Applied Engineering Research, 13(5), 2258–2270. ISSN 0973-4562.Google Scholar
  17. 17.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.Google Scholar
  18. 18.
    Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016). A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University—Computer and Information Sciences, 28(3), 262–275.CrossRefGoogle Scholar
  19. 19.
    Wang, X. Y., & Gu, S. X. (2014). New chaotic encryption algorithm based on chaotic sequence and plain text. IET Information Security, 8(3), 213–216.CrossRefGoogle Scholar
  20. 20.
    Shankar, K., & Lakshmanaprabu, S. K. (2018). Optimal key based homomorphic encryption for color image security aid of ant lion optimization algorithm. International Journal of Engineering & Technology, 7(1.9), 22–27.Google Scholar
  21. 21.
    Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., et al. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6, 10269–10278.  https://doi.org/10.1109/access.2018.2799240.CrossRefGoogle Scholar
  22. 22.
    Ping, N. L., Ee, K. B., & Wei, G. C. (2007). A study of digital watermarking on medical image. In World congress on medical physics and biomedical engineering 2006 (pp. 2264–2267). Berlin, Heidelberg: Springer.Google Scholar
  23. 23.
    Elhoseny, M., Shankar, K., Lakshmanaprabu, S. K., Maseleno, A., & Arunkumar, N. (2018). Hybrid optimization with cryptography encryption for medical image security in internet of things. In Neural computing and applications (pp. 1–15).Google Scholar
  24. 24.
    Shankar, K., Elhoseny, M., Kumar, R. S., Lakshmanaprabu, S. K., & Yuan, X. (2018). Secret image sharing scheme with encrypted shadow images using optimal homomorphic encryption technique. Journal of Ambient Intelligence and Humanized Computing, 1–13.Google Scholar
  25. 25.
    Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., & Manifavas, C. (2018). A review of lightweight block ciphers. Journal of Cryptographic Engineering, 8(2), 141–184.CrossRefGoogle Scholar
  26. 26.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B. S., et al. (2006, October). HIGHT: A new block cipher suitable for low-resource device. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 46–59). Berlin, Heidelberg: Springer.Google Scholar
  27. 27.
    Arfan, M. (2016, October). Mobile cloud computing security using cryptographic hash function algorithm. In 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 1–5). IEEE.Google Scholar
  28. 28.
    Singh, N., & Singh, S. B. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. Journal of Applied Mathematics, 2017.Google Scholar
  29. 29.
    Shankar, K., & Eswaran, P. (2015). Sharing a secret image with encapsulated shares in visual cryptography. Procedia Computer Science, 70, 462–468.CrossRefGoogle Scholar
  30. 30.
    Yang, X. S., & Deb, S. (2014). Cuckoo search: recent advances and applications. Neural Computing and Applications, 24(1), 169–174.Google Scholar
  31. 31.
    Shankar, K., & Eswaran, P. (2016). RGB-based secure share creation in visual cryptography using optimal elliptic curve cryptography technique. Journal of Circuits, Systems and Computers, 25(11), 1650138.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ComputingKalasalingam Academy of Research and EducationVirudhunagarIndia
  2. 2.Faculty of Computers and InformationMansoura UniversityMansouraEgypt

Personalised recommendations