Advertisement

Additives for Gases and Liquids

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter summarizes the effect of additives for gases and liquids on the enhancement of heat transfer. The heat transfer performance by using additives such as solid particles, metallic nano-sized particles, gas bubbles, suspensions in dilute polymer and surfactant solutions for single-phase liquids and solid and liquid additives for gaseous phase is presented. Also, the additives for boiling, condensation and absorption processes are discussed.

Keywords

Surfactants Nanoparticles Gas bubbles Polymers Fluidized beds Dispersants 

References

  1. Akbarinia A, Behzadmehr A (2007) Numerical study of laminar mixed convection of a Nanofluid in horizontal curved tubes. Appl Thermal Eng 27:1327–1337CrossRefGoogle Scholar
  2. Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M (2016) Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Mathemat Comput 290:135–153MathSciNetzbMATHCrossRefGoogle Scholar
  3. Ali HM, Generous MM, Ahmad F, Irfan M (2017) Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nano-fluids. Appl Therm Eng 113:1146–1151CrossRefGoogle Scholar
  4. Allen PHG, Cooper P (1987) The potential of electrically enhanced evaporators Third international symposium on the large scale application of heat pumps, Oxford, UK 221–229Google Scholar
  5. Ammerman CN, You SM (1996) Determination of the boiling enhancement mechanism caused by surfactant addition to water. J Heat Transf 118:429–435CrossRefGoogle Scholar
  6. Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AA, Ahmadi GR, Nguyen TK (2017) Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Trans 113:780–795CrossRefGoogle Scholar
  7. Avila R, Cervantes J (1995) Analysis of the heat transfer coefficient in a turbulent particle pipe flow. Int J Heat Mass Transf 38(11):1923–1932zbMATHCrossRefGoogle Scholar
  8. Babcsán N, Mészáros I, Hegman N (2003) Thermal and electrical conductivity measurements on aluminum foams. Mat Wiss u Werkstofftech 34:391–394CrossRefGoogle Scholar
  9. Bang IC, Chang SH (2004) Boiling heat transfer performance and phenomena of Al2O3– water Nanofluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419CrossRefGoogle Scholar
  10. Bartel WJ, Genetti WE (1973) Heat transfer from a horizontal bundle of bare and finned tubes in an air fluidized bed. A!ChE Svmp Ser 69(128):85–92Google Scholar
  11. Bergles AE, Scarola LS (1966) Effect of a volatile additive on the critical heat flux for surface boiling of water in tubes. Chem Eng Sci 21:721–723CrossRefGoogle Scholar
  12. Bhatti MS, Savery SW (1975) Augmentation of heat transfer in a laminar external gas boundary layer by the vaporization of suspended droplets. J Heat Transf 97:179–184CrossRefGoogle Scholar
  13. Boothroyd RG, Haque H (1970) Fully developed heat transfer to a gaseous suspension of particles flowing turbulently in duct of different size. J Mech Eng Sci 12(3):191–200CrossRefGoogle Scholar
  14. Bonilla CF, Cervi A Jr, Colven TJ Jr, Wang SJ (1953) Heat transfer to slurries in pipe, chalk, and water in turbulent flow. A!ChE Symp Sen 49(5):127–134Google Scholar
  15. Cheedarala RK, Park E, Kong K, Park YB, Park HW (2016) Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nano-fluid templates. Int J Heat Mass Transf 100:396–406CrossRefGoogle Scholar
  16. Chein R, Chuang J (2007) Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci 46(1):57–66CrossRefGoogle Scholar
  17. Cheol P, Zoubeida O, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TL (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308CrossRefGoogle Scholar
  18. Chen JC, Withers JG (1978) An experimental study of heat transfer from plain and finned tubes in fluidized beds. A!ChE Symp Ser 74(174):327–333Google Scholar
  19. Chitra SR, Sendhilnathan S, Suresh S (2015) Investigation of heat transfer characteristics of Mgmnni/Diw-based Nanofluids for quenching in industrial applications. J Enhanc Heat Transf 22(1):1CrossRefGoogle Scholar
  20. Cho YI, Hartnett JP (1982) Non-Newtonian fluids in circular pipe flow. In: Advances in heat transfer, vol 15. Academic, New York, pp 59–141Google Scholar
  21. Cho HJ, Kang IS, Kweon YC, Kim MH (1996) Study of the behavior of a bubble attached to a wall in a uniform electric field. Int J Multiphase Flow 22:909–922zbMATHCrossRefGoogle Scholar
  22. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. ASME, New York, pp 99–105Google Scholar
  23. Choi YJ, Kam DH, Jeong YH (2017) Analysis of CHF enhancement by magnetite nanoparticle deposition in the subcooled flow boiling region. Int J Heat Mass Transf 109:1191–1199CrossRefGoogle Scholar
  24. Chou CC, Yang YM (1991) Surfactant effects on the temperature profile within the superheated boundary layer and the mechanism of nucleate pool boiling. J Chinese Institute Chem Eng 22(2):71–80Google Scholar
  25. Chun MH, Kang MG (1998) Effects of heat exchanger tube parameters on nucleate pool boiling heat transfer. J Heat Transf 120:468–476CrossRefGoogle Scholar
  26. Ciloglu D (2017) An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transf Eng 38(10):919–930CrossRefGoogle Scholar
  27. Das S, Putra N, Thiesen P, Roetzel W (2003a) Temperature dependence of thermal conductivity enhancement for Nanofluids. J Heat Transf 125:567–574CrossRefGoogle Scholar
  28. Das SK, Putra N, Roetzel W (2003b) Pool boiling characteristics of Nano-fluids. Int J Heat Mass Transf 46:851–862zbMATHCrossRefGoogle Scholar
  29. Das SK, Putra N, Roetzel W (2003c) Pool boiling of Nano-fluids on horizontal narrow tubes. Int J Multiphase Flow 29:1237–1247zbMATHCrossRefGoogle Scholar
  30. Depew CA, Reisbig RL (1964) Vapor condensation on a horizontal tube using Teflon to promote dropwise condensation. Ind Eng Chem Process Design Dev. 11: 365-369.CrossRefGoogle Scholar
  31. Ding Y, Wen D (2005) Particle migration in a flow of nanoparticle suspensions. Powder Technol 149:84–92CrossRefGoogle Scholar
  32. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nanofluids). Int J Heat Mass Transf 49:240–250CrossRefGoogle Scholar
  33. Dizaji S (2014) Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger. Int J Automotive Eng 4(4):902–910Google Scholar
  34. Eastman JA, Choi SUS, Li S, Thompson LJ (1997) Enhanced thermal conductivity through the development of Nanofluids. Proc Symp on Nanophase and Nanocomposite materials II, materials research society. 457:3–11Google Scholar
  35. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based Nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefGoogle Scholar
  36. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworths, OxfordGoogle Scholar
  37. Esmaeili M, Sadeghy K, Moghaddami M (2010) Heat transfer enhancement of wavy channels using Al2O3 nanoparticles. J Enhanc Heat Transf 17(2):139–151CrossRefGoogle Scholar
  38. Filippov GA, Saltanov GA (1982) Steam-liquid media heat-mass transfer and hydrodynamics with surface-active substance additives. Heat Transfer, Vol. 4. Hemisphere Publishing Corporation:443–447Google Scholar
  39. Fossa M, Tagliafico LA (1995) Experimental heat transfer of drag-reducing polymer solutions in enhanced surface heat exchangers. Exp Thermal Fluid Sci 10:221–228CrossRefGoogle Scholar
  40. Funfschilling D, Li HZ (2006) Effects of the injection period on the rise velocity and shape of a bubble in a non-Newtonian fluid. Chem Eng Res Des 84(10):875–883CrossRefGoogle Scholar
  41. Furchi JCL, Goldstein L, Lombardi G, Mohseni M (1988) Heat transfer coefficients in flowing gas-solid suspensions, A!ChE Symp. Ser., 84(263), 26–30Google Scholar
  42. Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiphase Flow 28(4):553–578zbMATHCrossRefGoogle Scholar
  43. Gannett HJ Jr, Williams MC (1971) Pool boiling in dilute nonaqueous polymer solutions. Int J Heat Mass Transfer 11:1001–1005CrossRefGoogle Scholar
  44. Garg NS, Shankar U, Tripathi G (1980) Pool boiling heat transfer from rotating horizontal cylinders. Indian J Technol 18:53–56Google Scholar
  45. Grassi W, Testi D (2006) Heat transfer augmentation by ion injection in an annular duct. J Heat Transf Trans ASME 128:283–289CrossRefGoogle Scholar
  46. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F (2017) The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 236:254–265CrossRefGoogle Scholar
  47. Grenwal NS, Saxena SC (1979) Effect of surface ronghness on heat transfer from horizontal immersed tubes in a fluidized bed. J Heat Transf 101:397–403CrossRefGoogle Scholar
  48. Griffith P (1985) Condensation. Part 2: Dropwise condensation. In Handbook of heat transfer applications. McGraw-Hill, New York, Chap. 11.Google Scholar
  49. Gyr A, Bewersdorff HW (1995) Drag reduction of turbulent flows by additives. Kluwer, NetherlandszbMATHCrossRefGoogle Scholar
  50. Ham J, Kim H, Shin Y, Cho H (2017) Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration. Int J Therm Sci 114:86–97CrossRefGoogle Scholar
  51. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:187–191CrossRefGoogle Scholar
  52. He Y, Li H, Hu Y, Wang X, Zhu J (2016) Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nano-fluids in a cylindrical vessel. Int J Heat Mass Transf 98:611–615CrossRefGoogle Scholar
  53. Heidary H, Kermani MJ (2012) Heat transfer enhancement in a channel with block (s) effect and utilizing nano-fluid. Int J Therm Sci 57:163–171CrossRefGoogle Scholar
  54. Heris SZ, Esfahany MN, Etemad G (2006) Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube. J Enhanc Heat Transf 13(4):279–289CrossRefGoogle Scholar
  55. Hong K, Hong TK, Yang HS (2006) Thermal conductivity of Fe Nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:31901–1–31901-3CrossRefGoogle Scholar
  56. Hong T-K, Yang H-S (2005) Nanoparticle-dispersion-dependent thermal conductivity in nanofluids. J Korean Phys Soc 47:321CrossRefGoogle Scholar
  57. Hu RYZ (1989) Nucleate pool boiling from a horizontal wire in viscoelastic fluid. Ph.D. Thesis, University of Illinois at Chicago, ChicagoGoogle Scholar
  58. Ide H, Kimura R, Kawaji M (2007) Optical measurement of void fraction and bubble size distributions in a microchannel. Heat Transf Eng 28(8–9):713–719CrossRefGoogle Scholar
  59. Irvine TF Jr, Kami J (1987) Non-Newtonian fluid flow and heat transfer. In: Kakat S (ed) Handbook of single-phase convective heat transfer. Wiley-Interscience, New York, p 20Google Scholar
  60. Jontz PD, Myers JE (1960) The effect of dynamic surface tension on nucleate boiling coefficients. AIChE J 6:34–38CrossRefGoogle Scholar
  61. Kamel MS, Lezsovits F, Hussein AM, Mahian O, Wongwises S (2018) Latest developments in boiling critical heat flux using nanofluids: a concise review. Int Commun Heat Mass Transf 98:59–66CrossRefGoogle Scholar
  62. Katto Y, Kawamura S (1981) Critical heat flux during natural convective boiling on uniformly heated tubes submerged in saturated liquid. JSME B 47(423):2186–2190CrossRefGoogle Scholar
  63. Kenning DBR, Kao YS (1972) Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int J Heat Mass Transf 15:1709–1718CrossRefGoogle Scholar
  64. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing Nanofluids. Int J Heat Mass Transf 46(19):3639–3653zbMATHCrossRefGoogle Scholar
  65. Kim KJ, Kulankara S, Herold K, Miller C (1996) Heat transfer additives for use in high temperature applications. Proc Int Absorp Heat Pump Conf. Montreal, Canada, 1, 89-97.Google Scholar
  66. Kim KJ, Lefsaker AM, Razani A, Stone A (2001) The effective use of heat transfer additives for steam condensation. Appl Thermal Eng 21:1863–1874CrossRefGoogle Scholar
  67. Kitagawa A, Kosuge K, Uchida K, Hagiwara Y (2008) Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Exp Fluids 45(3):473–484CrossRefGoogle Scholar
  68. Kitagawa A, Kitada K, Hagiwara Y (2010) Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Exp Fluids 49(3):613–622CrossRefGoogle Scholar
  69. Kofanov VI (1964) Heat transfer and hydraulic resistance in flowing liquid suspensions in piping. Int Chem Eng 4(3):426–430Google Scholar
  70. Koo J, Kleinstreuer C (2005) Laminar Nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661zbMATHCrossRefGoogle Scholar
  71. Kosky PG (1976) Heat transfer to saturated mist flowing normally to a heated cylinder. Int J Heat Mass Transf 19:539–543CrossRefGoogle Scholar
  72. Kotchaphakdee P, Williams MC (1970) Enhancement of nucleate pool boiling with polymeric additives. Int J Heat Mass Transf 13:835–848CrossRefGoogle Scholar
  73. Kowsary F, Heyhat MM (2011) Numerical investigation into the heat transfer enhancement of Nanofluids using a nonhomogeneous model. J Enhanc Heat Transf 18(1):81–90CrossRefGoogle Scholar
  74. Krause WB, Peters AR (1983) Heat transfer from horizontal serrated finned tubes in an air-fluidized bed of uniformly sized particles. J Heat Transf 105:319–324CrossRefGoogle Scholar
  75. Kumada M, Chu R, Sato K (2002) Heat transfer enhancement and flow characteristics of drag-reducing surfactant aqueous solutions using the turbulent promoter. Proc 12th Int Heat Transfer Conf 4:129–134Google Scholar
  76. Kurosaki Y, Murasaki T (1986) Study on heat transfer mechanism of a gas–solid suspension impinging jet (effect of particle size and thermal properties). Proc 8th Int Heat Transfer Conf 5:2587–2592CrossRefGoogle Scholar
  77. Kwak SD, Oh Y (2000) A study of bubble behavior and boiling heat transfer enhancement under electric field. Heat Transf Eng 21(4):33–45CrossRefGoogle Scholar
  78. Kweon YC, Kim MH, Cho HJ, Kang IS (1998) Study on the deformation and departure of a bubble attached to a wall in DC/AC electric fields. Int J Multiphase Flow 24:145–162Google Scholar
  79. Lee WK, Vaseleski RC, Metzner AB (1974) Turbulent drag reduction in polymeric solutions containing suspended fibers. AIChE J 20:128–133CrossRefGoogle Scholar
  80. Li P, Kawaguchi Y, Daisaka H, Yabe A, Hishida K, Maeda M (2001) Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet. J Heat Transf 123:779–789CrossRefGoogle Scholar
  81. Li Q, Xuan Y (2000) Experimental investigation of transport properties of nanofluids. In: Buxuan W (ed) Heat transfer science & technology. Higher Education Press, Beijing, pp 757–762Google Scholar
  82. Li X, Zhu D, Wang X, Wang N, Gao J (2009) Thermal conductivity enhancement for aqueous alumina nano-suspensions in the presence of surfactant. J Enhanc Heat Transf 16(2):93–102CrossRefGoogle Scholar
  83. Liao L, Liu Z, Bao R (2010) Forced convective flow drag and heat transfer characteristics of CuO nanoparticle suspensions and nanofluids in a small tube. J Enhanc Heat Transf 17(1):45–57CrossRefGoogle Scholar
  84. Liu T, Cai Z, Lin J (1990) Enhancement of nucleate boiling heat transfer with additives. In: Deng S-J (ed) Heat transfer enhancement and energy conservation. Hemisphere Publishing Corp, Washington, DC, pp 417–424Google Scholar
  85. Liu ZH (2001) Enhancement of boiling heat transfer in restricted spaces in compact horizontal tube bundles. Heat Transf–Asian Res 30:394–401CrossRefGoogle Scholar
  86. Liu Y, Li R, Wang F, Yu H (2004) The effect of electrode polarity on EHD enhancement of boiling heat transfer in a vertical tube. Exp Therm Fluid Sci 29:601–608CrossRefGoogle Scholar
  87. Lv LC, Liu Z (2008) Boiling heat transfer characteristics in small vertical tubes submerged in saturated nanoparticle suspensions. J Enhanc Heat Transf 15(2):101–112CrossRefGoogle Scholar
  88. Lv LC, Liu Z (2010) Effects of nanoparticle parameters on thermal performance of the evaporator in a small capillary pumped loop using nanofluid. J Enhanc Heat Transf 17(4):343–352CrossRefGoogle Scholar
  89. Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer enhancement in forced convection laminar tube flow by using nanofluids. In Proc Int Symp Adv Comput Heat Transf CHT04, April 19-24; NorwayGoogle Scholar
  90. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 7(4):227–233CrossRefGoogle Scholar
  91. Manglik RM (1998) Pool boiling characteristics of high concentration aqueous surfactant emulsions. Heat Trans 2:449–453Google Scholar
  92. Miaw CB (1978) A study of heat transfer to dilute polymer solutions in nucleate pool boiling. Ph.D. Thesis University of Michigan, Ann ArborGoogle Scholar
  93. Miller AP, Moulton RW (1956) Heat transfer to liquid-solid suspensions in turbulent flow in pipes. Trend Eng:15–21Google Scholar
  94. Monde M, Yamaji K (1990) Critical heat flux during natural circulation boiling in a vertical uniformly heated tube submerged in saturated liquid. Int J Heat Transf 2:111–116CrossRefGoogle Scholar
  95. Morgan AI, Bromley LA, Wilkie CR (1949) Effect of surface tension on heat transfer in boiling. Ind Eng Chem 41:2767–2769CrossRefGoogle Scholar
  96. Moyls AL, Sabersky RH (1975) Heat transfer to dilute asbestos dispersions in smooth and rough tubes. Lett Heat Mass Trans 2:293–302CrossRefGoogle Scholar
  97. Murray DB (1994) Local enhancement of heat transfer in a particulate cross flow—I. Heat transfer mechanisms. Int J Multiphase Flow 20(3):493–504MathSciNetzbMATHCrossRefGoogle Scholar
  98. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Ther Sci 44(4):367–373CrossRefGoogle Scholar
  99. Neve RS, Yan YY (1996) Enhancement of heat exchanger performance using combined electrohydrodynamic and passive methods. Int J Heat Fluid Flow 17:403–409CrossRefGoogle Scholar
  100. Nishikawa N, Takase H (1979) Effects of particle size and temperature difference on mist flow over a heated circular cylinder. J Heat Transf 101:705–711CrossRefGoogle Scholar
  101. Nouri NM, Sarreshtehdari A (2009) An experimental study on the effect of air bubble injection on the flow induced rotational hub. Exp Thermal Fluid Sci 33(2):386–392CrossRefGoogle Scholar
  102. Ogata J, Yabe A (1991) Augmentation of nucleate boiling heat transfer by applying electric fields: EHD behavior of boiling bubble. Proc ASME/JSME Therm Eng 3:41–46Google Scholar
  103. Ogata J, Yabe A (1993) Augmentation of boiling heat transfer by utilizing the EHD effect -EHD behaviour of boiling bubbles and heat transfer characteristics. Int J Heat Mass Transf 36:783–791CrossRefGoogle Scholar
  104. Ökten K, Biyikoglu A (2018a) Effect of air bubble injection on the overall heat transfer coefficient. J Enhanc Heat Transf 25(3):195CrossRefGoogle Scholar
  105. Ökten K, Biyikoglu A (2018b) Effect of air bubble injection on the overall heat transfer coefficient. J Enhan Heat Transf 25(3)CrossRefGoogle Scholar
  106. Orr C, Dallavalle JM (1954) Heat transfer properties of liquid-solid suspensions. Chem Eng Prag Symp Ser 50(9):29–45Google Scholar
  107. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. ExpHeat Transf 2:151–170Google Scholar
  108. Pal SK, Bhattacharyya S (2018) Enhanced heat transfer of Cu-water nanofluid in a channel with wall mounted blunt ribs. J Enhan Heat Trans 25(1)CrossRefGoogle Scholar
  109. Paper RA, Ohadi MM, Kumar A, Ansari AI (1993) Effect of electrode geometry on EHD-enhanced boiling of R-123/oil mixture. ASHRAE Trans 99:1237–1243Google Scholar
  110. Paul DD, Abdel-Khalik SI (1983) Nucleate boiling in drag reducing polymer solutions. J Rheol 27(1):59–76CrossRefGoogle Scholar
  111. Petrie JC, Freeby JA, Buckham JA (1968) In-bed heat exchangers. Chem Eng Prog 45–51Google Scholar
  112. Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective conductive model for the thermal conductivity of nanofluids. Trans ASME J Heat Transf 128:588–595CrossRefGoogle Scholar
  113. Podsushnyy AM, Minyev AN, Statsenko VN, Yakubovskiy YV (1980) Effect of surfactants and of scale formation on boiling heat transfer to sea water. Heat Trans–Soviet Res 12(2):113–114Google Scholar
  114. Qi Y, Kawaguchi Y, Lin Z, Ewing M, Christensen RN, Zakin JL (2001) Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int J Heat Mass Transf 44:1495–1505zbMATHCrossRefGoogle Scholar
  115. Raisee M, Moghaddami M (2008) Numerical investigation of laminar forced convection of nanofluids through circular pipes. J Enhanc Heat Transf 15(4):335–350CrossRefGoogle Scholar
  116. Rodríguéz-Perez MA, Reglero JA, Lehmhus D, Wichmann M, De Saja JA, Fernández A (2003) The transient plane source technique (TPS) to measure thermal conductivity and its potential as a tool to detect in-homogeneities in metal foams, Proc Int Conf advanced metallic materials, Smolenice, Slovakia, 5–7 November: 253–257Google Scholar
  117. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling liquids. Trans ASME 74:969–979Google Scholar
  118. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  119. Roy G, Nguyen CT, Lajoie PR (2004) Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstructures 35(3):497–511CrossRefGoogle Scholar
  120. Roy GC, Nguyen CT, Comeau M (2006) Numerical investigation of electronic component cooling enhancement using nanofluids in a radial flow cooling system. J Enhanc Heat Transf 13(2):101–115CrossRefGoogle Scholar
  121. Rush WF (1968) Field testing of additives. In Symposium on absorption air conditioning, American Gas Association, Chicago, ILGoogle Scholar
  122. Rush W, Wurum J, Perez-Blanco H (1991) A brief review of additives for absorption enhancement, vol 91. Absorp Heat Pump Conf, Tokyo, Japan, pp 183–187Google Scholar
  123. Sadek SE (1972) Heat transfer to air-solids suspensions in turbulent flow. Ind Eng Chem Process Design Dev 11:133–135CrossRefGoogle Scholar
  124. Saffari H, Moosavi R, Gholami E, Nouri NM (2013) The effect of bubble on pressure drop reduction in helical coil. Exp Thermal Fluid Sci 51:251–256CrossRefGoogle Scholar
  125. Saltanov GA, Kukushkin AN, Solodov AP, Sotskov SA, Jakusheva EV, Chempik E (1986) Surfactant influence on heat transfer at boiling and condensation. Heat Trans. 1986, Hemisphere Publishing Corporation, Washington, DC, Vol. 5, pp. 2245–2250Google Scholar
  126. Samaroo R, Kaur N, Itoh K, Lee T, Banerjee S, Kawaji M (2014) Turbulent flow characteristics in an annulus under air bubble injection and subcooled flow boiling conditions. Nucl Eng Des 268:203–214CrossRefGoogle Scholar
  127. Sandhu H, Gangacharyulu D, Singh MK (2018) Experimental investigations on the cooling performance of micro-channels using alumina nano-fluids with different base fluids. J Enhanc Heat Transf 25(3):283CrossRefGoogle Scholar
  128. Sarafraz MM, Kiani T, Hormozi F (2016) Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int Commun Heat Mass Transf 70:75–83CrossRefGoogle Scholar
  129. Sato Y, Deutsch E, Simonin O (1998) Direct numerical simulation of heat transfer by solid particles suspended in homogenous isotropic turbulence. Int J Heat Fluid Flow 19:187–192CrossRefGoogle Scholar
  130. Sulaiman MZ, Matsuo D, Enoki K, Okawa T (2016) Systematic measurements of heat transfer characteristics in saturated pool boiling of water-based nano-fluids. Int J Heat Mass Transf 102:264–276CrossRefGoogle Scholar
  131. Tamari M, Nishikawa K (1976) The stirring effect of bubbles upon the heat transfer to liquids. Heat Trans Japanese Res 5(2):31–44Google Scholar
  132. Tanasawa I (1978) Dropwise condensation: the way to practical applications. Proc 6th Int Heat Transfer Conf 6:393–405CrossRefGoogle Scholar
  133. Thomas WC, Sunderland JE (1970) Heat transfer between a plane surface and air containing water droplets. Ind Eng Chem Fundam 9:368–374CrossRefGoogle Scholar
  134. Thome JR (2017) A review on falling film evaporation. J Enhanc Heat Transf 24:1–6CrossRefGoogle Scholar
  135. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58(9):1461–1465CrossRefGoogle Scholar
  136. Tu JP, Dinh N, Theofanous T (2004) An experimental study of nanofluid boiling heat transfer. Proc. 6th Int. Symp. on Heat Transfer, Beijing ChinaGoogle Scholar
  137. Tzan YL, Yang YM (1990) Experimental study of surfactant effects on pool boiling heat transfer. J Heat Trans 112:207–212CrossRefGoogle Scholar
  138. Ulicny JC (1984) Nucleate pool boiling in dilute polymer solutions. Ph.D. Thesis, University of Michigan, Ann ArborGoogle Scholar
  139. van Stralen SJD (1959) Heat transfer to boiling binary liquid mixtures. B1: Chem Eng 4(Patt I):8-17; 4 (Part II), 78–82Google Scholar
  140. van Stralen SJD, Cole R (1979) Boiling phenomena: physicochemical and engineering fundamentals. Hemisphere, Washington l:49–50Google Scholar
  141. van Wijk, WR, Vos AS, van Stralen SJD (1956) Heat transfer to boiling binary liquid mixtures. Chem. Eng. Sci., 5:68–80Google Scholar
  142. Wang C-C, Chen C-K (2002) Combined free and forced convection film condensation on a finite-size horizontal wavy plate. J Heat Trans 124:573–576CrossRefGoogle Scholar
  143. Wang TAA, Hartnett JP (1992) Influence of surfactants on pool boiling of aqueous polyacrylamide solutions. Warme Stoffubertrag 27:245–248CrossRefGoogle Scholar
  144. Wang TA A, Hartnett JP (1994) Pool boiling heat transfer from a horizontal wire to aqueous surfactant solutions. Heat Transfer 1994, I Chem. E, UK, 5:177–182Google Scholar
  145. Wasekar VM, Manglik RM (2017) Enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanc Heat Transf 24(1-6)CrossRefGoogle Scholar
  146. Wasekar VM, Manglik RM (1999) A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhan Heat Transf 6:135–150CrossRefGoogle Scholar
  147. Wasekar VM, Manglik RM (2000) Pool boiling heat transfer in aqueous solutions of an anionic surfactant. J Heat Transf 122:708–715CrossRefGoogle Scholar
  148. Watkins RW, Robertson CR, Acrivos A (1976) Entrance region heat transfer in flowing suspensions. Int J Heat Mass Transf 19:693–695CrossRefGoogle Scholar
  149. Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New YorkGoogle Scholar
  150. Wen DS, Wang BX (2002) Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int J Heat Mass Transf 45:1739–1747CrossRefGoogle Scholar
  151. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of Nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRefGoogle Scholar
  152. Wen D, Ding Y, Williams RA (2006) Pool boiling heat transfer of aqueous TiO2-based nanofluids. J Enhanc Heat Transf 13(3):231–244CrossRefGoogle Scholar
  153. Witharana S (2003) Boiling of refrigerants on enhanced surfaces and boiling of Nanofluids. PhD Thesis, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  154. Wu WT, Yang YM, Maa JR (1995) Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives. J Heat Transf 117:526–529CrossRefGoogle Scholar
  155. Wu W-T, Yang Y-M (1992) Enhanced boiling heat transfer by surfactant additives. In Dhir VK, Bergles AE (eds) Proceedings of the engineering foundation conference on pool and external flow boiling. Santa Barbara, CA, 361–366Google Scholar
  156. Wu W-T, Yang Y-M, Maa J-R (1998) Nucleate pool boiling enhancement by means of surfactant additives. Exp Thermal Fluid Sci 18:195–209CrossRefGoogle Scholar
  157. Xuan Y, Li Q (2000) Heat transfer enhancement of Nanofluids. Int J Heat Fluid Flow 21(1):58–64CrossRefGoogle Scholar
  158. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRefGoogle Scholar
  159. Xuan Y, Roetzel W (2000) Conception for heat transfer correlation of nanofluid. Int J Heat Mass Transf 43(19):3701–3707zbMATHCrossRefGoogle Scholar
  160. Yang YM, Maa JR (1982) Effects of polymer additives on pool boiling phenomena. Letters in Heat Mass Transfer 9:237–244CrossRefGoogle Scholar
  161. Yang YM, Maa JR (1983) Pool boiling of dilute surfactant solutions. J Heat Trans 105:190–192CrossRefGoogle Scholar
  162. Yang Y-M, Lin C-Y, Liu M-H, Maa J-R (2002) Lower limit of the possible nucleate pool boiling enhancement by surfactant addition to water. J Enhan Heat Transf 9:153–160CrossRefGoogle Scholar
  163. Yoo SS (1974) Heat transfer and friction factor for nonnewtonian fluids in turbulent pipe flow. Ph.D Thesis, University of Illinois, ChicagoGoogle Scholar
  164. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in Pool boiling heat transfer. Appl Phys Lett 83:3374–3376CrossRefGoogle Scholar
  165. Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460CrossRefGoogle Scholar
  166. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2005) Experimental investigation of convective heat transfer of Nanofluid in circular tube. Int J Heat Fluid Flow 28(2):203–210CrossRefGoogle Scholar
  167. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water Nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210CrossRefGoogle Scholar
  168. Zhang S, Luo Z, Wang T, Shou C, Ni M, Cen K (2010) Experimental study on the convective heat transfer of CuO− water Nanofluid in a turbulent flow. J Enhanc Heat Transf 17(2):183–196CrossRefGoogle Scholar
  169. Zhu DS, Li XF, Wang XJ (2007) Study on preparation and dispersion behavior of Al2O3–H2O nanofluids. Chinese J New Chem Mater 35:45–47Google Scholar
  170. Ziegler F, Grossman G (1996) Heat transfer enhancement by additives. Int J Refrig 19:301–309CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations