Enhancement of Two-Phase Flow Using EHD Technique

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The heat transfer augmentation in two-phase flow using EHD technique is presented in this chapter. The concepts of vapour space condensation, in-tube condensation, falling film evaporation, pool boiling, critical heat flux and convective vaporization with EHD technique are thoroughly elaborated.


Vapour space condensation In-tube condensation Falling film evaporation Pool boiling Critical heat flux Convective vaporization 


  1. Al-Ahmadi A, Al-Dadah RK (2002) A new set of correlations for EHD condensation heat transfer of tubular systems. Appl Thermal Eng 22:1981–2001CrossRefGoogle Scholar
  2. Alhusseini AA, Hoke BC, Chen JC (1996) Critical heat flux in falling films undergoing nucleate boiling. In Chen JC (eds) Convective flow boiling. Taylor Francis: 339–344 (Proc. of Convective Flow Boiling Conj: in Banff, Canada, April 30–May 5, 1995)Google Scholar
  3. Bologa MK, Korovkin VP, Savin IK (1995) Mechanism of condensation heat transfer enhancement in an electric field and the role of capillary processes. Int J Heat Mass Transf 38(1):175–182CrossRefGoogle Scholar
  4. Bologa MK, Kozhevnikov IV, Mardarskii OI, Polikarpov AA (2012) Boiling heat transfer in the field of electric forces. Surf Eng Appl Electrochem 48(4):329–331CrossRefGoogle Scholar
  5. Boreyko JB, Chen CH (2010) Self-propelled jumping drops on superhydrophobic surfaces. Phys Fluids 22(9):091110CrossRefGoogle Scholar
  6. Boreyko JB, Chen CH (2013) Vapor chambers with jumping-drop liquid return from super-hydrophobic condensers. Int J Heat Mass Transf 61:409–418CrossRefGoogle Scholar
  7. Boreyko JB, Collier CP (2013) Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7(2):1618–1627CrossRefGoogle Scholar
  8. Boreyko JB, Zhao Y, Chen CH (2011) Planar jumping-drop thermal diodes. Appl Phys Lett 99(23):234105CrossRefGoogle Scholar
  9. Bryan JE, Seyed-Yagoobi Y (2001) Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling. J Heat Transfer 123:355–367CrossRefGoogle Scholar
  10. Butt HJ, Untch MB, Golriz A, Pihan SA, Berger R (2011) Electric-field-induced condensation: an extension of the kelvin equation. Phys Rev E 83(6):061604CrossRefGoogle Scholar
  11. Carrica P, Di Marco P, Grassi W (1997) Nucleate pool boiling in the presence of an electric field: effect of subcooling and heat-up rate. Exp Thermal Fluid Sci 15(3):213–220CrossRefGoogle Scholar
  12. Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1997) Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes. Heat Technol 15(1):3–10Google Scholar
  13. Cavallini A, Del Col D, Mancin S, Rossetto L (2006) Thermal performance of R-410A condensing in a microfin tube. In: Proc Int Refrig Conf R178Google Scholar
  14. Cerza M (1992) Nucleate boiling in thin falling liquid films. Pool and External Flow Boiling Conference, Santa Barbara: 459–466Google Scholar
  15. Chavez RL, Liu F, Feng JJ, Chen CH (2016) Capillary-inertial colloidal catapults upon drop coalescence. Appl Phys Lett 109(1):011601CrossRefGoogle Scholar
  16. Chen X, Ma R, Zhou H, Zhou X, Che L, Yao S, Wang Z (2013) Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion. Sci Rep 3:2515CrossRefGoogle Scholar
  17. Cheung K, Ohadi MM, Dessiatoun SV (1999) EHD-assistecl external condensation of R-134a on smooth horizontal and vertical tubes. Int J Heat Mass Transf 42:1747–1755CrossRefGoogle Scholar
  18. Cheung KH, Ohadi MM, Dessiatoun S (1995) Compound enhancement of boiling heat transfer of R-134a in a tube bundle. ASHRAE Trans Symp 101(Part 1):1009–1019Google Scholar
  19. Cho HJ, Mizerak JP, Wang EN (2015) Turning bubbles on and off during boiling using charged surfactants. Nature Communications 6:8599CrossRefGoogle Scholar
  20. Choi HY (1968) Electrohydrodynamic condensation heat transfer. J Heat Transf 90(1):98–102CrossRefGoogle Scholar
  21. Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes, proc. of IIF-IIR commission B1, Paderborn, Germany, B4: 9–16Google Scholar
  22. Chu RC, Nishio S, Tanasawa I (2001) Enhancement of condensation heat transfer on a finned condensation. Proc Third ASMEIJSME Thermal Eng Conf 3:47–53Google Scholar
  23. Chyu MC, Bergles AE, Mayinger F (1982) Enhancement of horizontal tube spray film evaporators, Proc. 7th international heat transfer con/, Munich, 6, 275–280Google Scholar
  24. Cooper P (1990) EHD enhancement of nucleate boiling. J Heat Transfer 112:458–464CrossRefGoogle Scholar
  25. Cooper P (1992) Practical design aspects of EHD heat transfer enhancement in evaporators. In ASHRAE Winter Meeting, Anaheim. CA, USA, 01/25–29/92: 445–454Google Scholar
  26. Cotton JS, Robinson AJ, Chang JS, Shoukri M (2008) Electrohydrodynamic enhancement of flow boiling in an eccentric horizontal cylindrical channel. J Enhanc Heat Transf 15(3):183–198CrossRefGoogle Scholar
  27. Damianidis C, Karayinnis T, Al-Dadah RK, James RW, Collins MW, Allen PHG (1992) EHD boiling enhancement in shell-and-tube evaporators and its application to refrigeration plants. ASH RAE Trans 98(Part 2):462–473Google Scholar
  28. Darabi J, Ohadi MM, Dessiatoun SV (2000a) Falling film and spray evaporation enhancement using an applied electric field. J Heat Transfer 122:741–748CrossRefGoogle Scholar
  29. Darabi J, Ohadi MM, Dessiatoun SV (2000b) Augmentation of thin falling-film evaporation on horizontal tubes using an applied electric field. J Heat Transfer 122:391–398CrossRefGoogle Scholar
  30. Darabi J, Ohadi MM, Dessiatoun SV (2000c) Compound augmentation of pool boiling on three selected commercial tubes. J Enhanced Heat Transfer 7:347CrossRefGoogle Scholar
  31. Di Marco P, Grassi W (2011) Effects of external electric field on pool boiling: comparison of terrestrial and microgravity data in the ARIEL experiment. Exp Thermal Fluid Sci 35(5):780–787CrossRefGoogle Scholar
  32. Di Marco P, Grassi W, Memoli G, Takamasa T, Tomiyama A, Hosokawa S (2003) Influence of electric field on single gas-bubble growth and detachment in microgravity. Int J Multiphase Flow 29(4):559–578zbMATHCrossRefGoogle Scholar
  33. Didkovsky AB, Bologa MK (1981) Vapour film condensation heat transfer and hydrodynamics under the influence of an electric field. Int J Heat Mass Transf 24(5):811–819CrossRefGoogle Scholar
  34. Doretti L, Zilio C, Mancin S, Cavallini A (2013) Condensation flow patterns inside plain and microfin tubes: a review. Int J Refrig 36:567–587CrossRefGoogle Scholar
  35. Eckels SJ, Tesene BA (1999) A comparison of R-22, R-134A, R-410A and R-407C condensation performance in smooth and enhanced tubes, part I: heat transfer. ASHRAE Trans 105:428–441Google Scholar
  36. Gidwani A, Molki M, Ohadi MM (2002) EHD-enhanced condensation of alternative refrigerants in smooth and corrugated tubes. Int J HVAC & R Res 8(3):219–238CrossRefGoogle Scholar
  37. Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes. Int J Refrig 24:628–638CrossRefGoogle Scholar
  38. Grassi W, Testi D, Saputelli M (2005a) EHD enhanced heat transfer in a vertical annulus. Int Commun Heat Mass Transf 32(6):748–757CrossRefGoogle Scholar
  39. Grassi W, Testi D, Saputelli M (2005b) Heat transfer enhancement in a vertical annulus by electrophoretic forces acting on a dielectric liquid. Int J Therm Sci 44(11):1072–1077CrossRefGoogle Scholar
  40. Grassi W, Testi D (2006) Heat transfer augmentation by ion injection in an annular duct. J Heat Transfer — Trans. ASME. 128:283–289CrossRefGoogle Scholar
  41. Han D, Lee KJ (2005) Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes. Int J Heat Mass Transfer 48:3804–3816CrossRefGoogle Scholar
  42. Haraguchi H, Koyama S, Esaki J, Fujii T (1993) Condensation heat transfer of refrigerants Hcfc134A, Hcfc123 and Hcfc22 in a horizontal smooth tube and a horizontal microfin tube, in proc. of 30th Natl. Symp. of Japan, Yokohama 343–345Google Scholar
  43. Holmes RE, Chapman AJ (1970) Condensation of Freon-114 in the presence of a strong nounniform alternating electric field. J Heat Transf Trans ASME 92:616–620CrossRefGoogle Scholar
  44. Houfuku M, Suzuki Y, Inui K (2001) High-performance, lightweight THERMOFIN tubes for air conditioners using alternative refrigerants. Hitachi Cable Review 2001:97–100Google Scholar
  45. Hu X, Jacobi AM (1996a) The lntertube falling film: part I-flow characteristics, mode transitions, and hysteresis. J Heat Transf 118:616–625CrossRefGoogle Scholar
  46. Hu X, Jacobi AM (1996b) The lntertube falling film: part 2-mode effects on sensible heat transfer to a falling liquid film. J Heat Transf 118:626–633CrossRefGoogle Scholar
  47. Jung D, An K, Park J (2004) Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes. Int J Refrigeration 27:202–206CrossRefGoogle Scholar
  48. Karayiannis TG (1998) EHD boiling heat transfer enhancement of R 123 and Rl 1 on a tube bundle, of R-123 and their enhancement using the EHD technique. J Enhan Heat Transfer 2:209Google Scholar
  49. Kedzierski MA, Gonclaves JM (1999) Horizontal convective condensation of alternative refrigerants within a microfin tube. J Enhanc Heat Transf 6:161–178CrossRefGoogle Scholar
  50. Kim NH (2016) Condensation heat transfer and pressure drop of R-410a in 5.0-mm-od smooth or microfin tubes at low mass fluxes. J Enhanc Heat Transf 23(5):120–145CrossRefGoogle Scholar
  51. Kim MH, Shin JS (2005) Condensation heat transfer of R-22 and R-410A in horizontal smooth and microfin tubes. Int J Refrig 28:949–957CrossRefGoogle Scholar
  52. Kollera M, Grigull U (1969) The bouncing off phenomenon of droplets with condensation of mercury. Heat Mass Transf 2(1):31–35Google Scholar
  53. Kweon YC, Kim MH (2000) Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a non-uniform dc electric field. Int J Multiphase Flow 26(8):1351–1368zbMATHCrossRefGoogle Scholar
  54. Liu F, Ghigliotti G, Feng JJ, Chen CH (2014) Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J Fluid mechanics 752:39–65CrossRefGoogle Scholar
  55. Liu Z, Herman C, Mewes D (2006) Visualization of bubble detachment and coalescence under the influence of a nonuniform electric field. Exp Thermal Fluid Sci 31(2):151–163CrossRefGoogle Scholar
  56. Lv J, Song Y, Jiang L, Wang J (2014) Bio-inspired strategies for anti-icing. ACS Nano 8(4):3152–3169CrossRefGoogle Scholar
  57. Mahmoudi SR, Adamiak K, Castle GP (2014) Flattening of boiling curves at post-CHF regime in the presence of localized electrostatic fields. Int J Heat Mass Transf 68:203–210CrossRefGoogle Scholar
  58. McGranaghan GJ, Robinson AJ (2014) The mechanisms of heat transfer during convective boiling under the influence of AC electric fields. Int J Heat Mass Transf 73:376–388CrossRefGoogle Scholar
  59. Migliaccio CP, Garimella SV (2013) Evaporative heat transfer from an electro-wetted liquid ribbon on a heated substrate. Int J Heat Mass Transf 57(1):73–81CrossRefGoogle Scholar
  60. Miyara A, Otsubo Y (2001) Condensation heat transfer of herringbone micro fin tubes. Exp Heat Trans. Fluid mechanics, and thermodynamics 2001, Edzioni ETS, Pisa, Italy, pp 381-386Google Scholar
  61. Moeykens SA, Pate MB (1995) The effects of nozzle height and orifice Siz.E on spray evaporation heat transfer performance for a low-finned, triangular-pitch tube bundle with R- l 34a. ASHRAE Trans 101(2):420–433Google Scholar
  62. Moradian A, Saidi MS (2008) Electrohydrodynamically enhanced nucleation phenomenon: a theoretical study. J Enhanc Heat Transf 15(1):1–15CrossRefGoogle Scholar
  63. Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes. Int J HVAC&R Res 7(2):125–153CrossRefGoogle Scholar
  64. Norris CE, Cotton JS, Shoukri M, Chang J-S, Smith-Pollard T (1999) Electrohydrodynamic effects on flow redistribution and convective boiling in horizontal concentric tubes under high inlet quality conditions. ASHRAE Trans 105(Part 1):222–236Google Scholar
  65. Nozu S, Katayama H, Nakata H, Honda H (1998) Condensation of refrigerant Cfc11 in horizontal microfin tubes (proposal of a correlation equation for frictional pressure gradient). Exp Thermal Fluid Sci 18:82–96CrossRefGoogle Scholar
  66. Nuinrich R (1996) Falling film evaporation of soluble mixtures. Convective Flow Boiling 335:125–135Google Scholar
  67. Ogata J, Iwafuji Y, Shimada Y, Yamaziki T (1992) Boiling heat transfer enhancement in tubebundle evaporator utilizing electric field effects. ASHRAE Trans 98(Part 2):435–444Google Scholar
  68. Oh S-D, Kwak HY (2000) A study of bubble behavior and boiling heat transfer enhancement under electric field. Heat Transfer Eng 21(4):33–45CrossRefGoogle Scholar
  69. Ohadi M, Faani M, Papar R, Radermacher R, Ng T (1992) EHD heat transfer enhancement of shell-side boiling heat transfer coefficients of R-123/oil mixture. ASHRAE Trans 98(Part 2):424–434Google Scholar
  70. Pandey V, Biswas G, Dalal A (2016) Effect of superheat and electric field on saturated film boiling. Physics of Fluids 28(5):052102CrossRefGoogle Scholar
  71. Papar RA, Ohadi MM, Kumar A, Ansari AI (1993) Effect of electrode geometry on EHD enhanced boiling of R-123/oil mixture. ASHRAE Trans 99(Part 1):1237–1243Google Scholar
  72. Preston DJ, Miljkovic N, Enright R, Wang EN (2014) ΔV Ē. J Heat Transf 136:080909–080901CrossRefGoogle Scholar
  73. Quan X, Gao M, Cheng P, Li J (2015) An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int J Heat Mass Transf 85:595–608CrossRefGoogle Scholar
  74. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. ASME Trans 74:969–976Google Scholar
  75. Schweizer N, Di Marco P, Stephan P (2013) Investigation of wall temperature and heat flux distribution during nucleate boiling in the presence of an electric field and in variable gravity. Exp Thermal Fluid Sci 44:419–430CrossRefGoogle Scholar
  76. Seth AK, Lee L (1974) The effect of an electric field in the presence of noncondensable gas on film condensation heat transfer. J Heat Transf 96(2):257–258CrossRefGoogle Scholar
  77. Shahriari A, Birbarah P, Oh J, Miljkovic N, Bahadur V (2017) Electric field–based control and enhancement of boiling and condensation. Nanosc Microsc Thermo-Phys Eng 21(2):102–121CrossRefGoogle Scholar
  78. Sheikhbahai M, Esfahany MN, Etesami N (2012) Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field. Int J Therm Sci 62:149–153CrossRefGoogle Scholar
  79. Siedel S, Cioulachtjian S, Robinson AJ, Bonjour J (2011) Electric field effects during nucleate boiling from an artificial nucleation site. Exp Thermal Fluid Sci 35(5):762–771CrossRefGoogle Scholar
  80. Singh A, Ohadi M, Dessiatoun S (1997) EHD enhancement of in-tube condensation heat transfer of alternate refrigerant, R-134a. ASHRAE Trans 103(1):97–100Google Scholar
  81. Singh A, Ohadi MM, Dessiatoun S (1995) EHD-enhanced boiling of R-123 over commercially available enhanced tubes. J Heat Transfer 117:1070–1073CrossRefGoogle Scholar
  82. Singh A, Ohadi MM, Dessiatoun S, Chu W (1994) In-tube boiling heat transfer enhancement of R-123 using the EHD technique. ASHRAE Trans 100(Part 2):818–825Google Scholar
  83. Sunada K, Yabe A, Taketani T, Yoshizawa Y (1991) Experimental study of EHD pseudo-dropwise condensation. Proc ASME/JSME Therm Eng 3:61–67Google Scholar
  84. Tang L, Ohadi MM, Johnson AT (2000a) Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants part 11: design equations. J Enhan Heat Trans 7(5):311–326CrossRefGoogle Scholar
  85. Tang L, Ohadi MM, Johnson AT (2000b) Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants part 1: experimental results. J Enhan Heat Trans 7(5):289–310CrossRefGoogle Scholar
  86. Takano K, Tanasawa I, Nishio S (1996) Enhancement of evaporation of a liquid droplet using EHD effect: criteria for instability of gas-liquid interface under electric field. J Enhan Heat Trans 3(1):72CrossRefGoogle Scholar
  87. Takata Y, Shirakawa H, Tanaka K, Ito T (2003) Numerical study on motion of a single bubble exerted by non-uniform electric field. Int J Transp Phenom 5:247–258Google Scholar
  88. Ulucakli E (1996) Heat transfer in a subcooled falling liquid film. In Chen JC (eds) Convective flow boiling. Taylor & Francis pp. 329-334 (proc. c,f convective flow boiling Conf in ban Canada, April 30–May 5, 1995)Google Scholar
  89. Velkoff HR, Miller JH (1965) Condensation of vapor on a vertical plate with a transverse electrostatic field. J Heat Transf 87(2):197–201CrossRefGoogle Scholar
  90. Verplaetsen FM, Berghmans JA (1999) Film boiling of an electrically insulating fluid in the presence of an electric field. Heat Mass Transf 35(3):235–241CrossRefGoogle Scholar
  91. Wang P, Lewin PL, Swaffield DJ, Chen G (2009) Electric field effects on boiling heat transfer of liquid nitrogen. Cryogenics 49(8):379–389CrossRefGoogle Scholar
  92. Wang Q, Yao X, Liu H, Quéré D, Jiang L (2015) Self-removal of condensed water on the legs of water striders. Proc Natl Acad Sci 112(30):9247–9252CrossRefGoogle Scholar
  93. Watson GS, Schwarzkopf L, Cribb BW, Myhra S, Gellender M, Watson JA (2015) Removal mechanisms of dew via self-propulsion off the gecko skin. J R Soc Interface 12(105):20141396CrossRefGoogle Scholar
  94. Wawzyniak M, Seyed-Yagoobi J (1996) Experimental study of electrohydrodynamically augmented condensation heat transfer on a smooth and an enhanced tube. J Heat Transfer 118:499–501CrossRefGoogle Scholar
  95. Yabe A (1991) Active heat transfer enhancement by applying electric fields. In: Proc. third ASME/JSME thermal Eng. C01~f. 3, xv-xxiiiGoogle Scholar
  96. Yamashita K, Kumagai M, Sekita S, Yabe A, Taketani T, Kikuchi K (1991) Heat transfer characteristics of an EHD condenser. Proc. Third ASME/JSME Joint Thermal Eng. Conj, Reno, Nevada, pp 61–67Google Scholar
  97. Yamashita K, Yabe A (1997) Electrohydrodynamic enhancement of falling film evaporation heat transfer and its long-term effect on heat exchangers. J. Heat Transfer 119(2):339–347CrossRefGoogle Scholar
  98. Yan YY, Neve RS, Allen PHG (1996) EHD effects on nucleate boiling at passively enhanced surfaces. Exp Heat Transfer 9(3):195–212CrossRefGoogle Scholar
  99. Zaghdoudi MC, Lallemand M (1999) Analysis of the polarity influence on nucleate pool boiling under a DC electric field. J Heat Transf 121(4):856–864CrossRefGoogle Scholar
  100. Zaghdoudi MC, Lallemand M (2005) Pool boiling heat transfer enhancement by means of high DC electric field. Arab J Sci Eng 30(2):112–125Google Scholar
  101. Zeng X, Chyu M-C, Ayub ZH (1997) Performance of nozzle-sprayed Ammonia evaporator with square-pitch plain-tube bundle. ASH RAE Trans 03(2), Paper):4059Google Scholar
  102. Zeng X, Chyu M-C, Ayub ZH (1998) Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes. ASHRAE Trans 104(1): Paper SF-98-15-2 (4109)Google Scholar
  103. Zhang K, Liu F, Williams AJ, Qu X, Feng JJ, Chen CH (2015) Self-propelled droplet removal from hydrophobic fiber-based coalescers. Phys Rev Lett 115(7):074502CrossRefGoogle Scholar
  104. Zhang Q, He M, Chen J, Wang J, Song Y, Jiang L (2013) Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem Commun 49(40):4516–4518CrossRefGoogle Scholar
  105. Zhang HB, Yan YY, Zu YQ (2010) Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling. Appl Math Model 34(3):626–638MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations