Advertisement

Centenarians pp 99-133 | Cite as

Epigenetics and Ageing

  • Dina Bellizzi
  • Francesco Guarasci
  • Francesca Iannone
  • Giuseppe PassarinoEmail author
  • Giuseppina Rose
Chapter

Abstract

The term epigenetics refers to the heritable alterations not due to changes in DNA sequences, which modulate the individual phenotype by modulating the expression and the activity of genes (Armstrong, Epigenetics, Garland Science, New York, 2013; Pinel et al., BioSocieties 13:276–303, 2018). In fact, DNA methylation and histone modification, that are covalent and non-covalent modifications of DNA and histone proteins, alter DNA accessibility and overall chromatin structure, thereby regulating patterns of gene expression (Huang et al., Epigenomics 6:73–88, 2014; Allis and Jenuwein, Nat Rev Genet 17:487–500, 2016).

More recently, epigenetics has also addressed the role of small non-coding RNAs in influencing gene expression levels (Moazed, Nature 457:413–420, 2009; Goldstein et al., Genome Res 27:462–470, 2017).

As these processes are influenced by environmental factors, epigenetics is often considered as a bridge between genome and environment in the definition of phenotype (Norouzitallab et al., Sci Total Environ 647:1281–1293, 2018). Many evidences have suggested in the last decade that ageing, which is deeply influenced by genetics, environment and their interaction, may be influenced by (and at the same time influence) epigenetics. In this chapter, we review both epigenetic modifications of DNA structure and the role of non-coding RNAs and their relationship with ageing and age-related phenotypes.

Keywords

Ageing Age-related diseases DNA methylation Epigenetics Histone modifications Non-coding RNAs 

References

  1. 1.
    Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res. 2009;88:400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Illingworth RS, Bird AP. CpG islands—‘a rough guide’. FEBS Lett. 2009;583:1713–20.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol. 2015;16:705–10.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wu TP, Wang T, Seetin MG, Lai Y, et al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature. 2016;532:329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sánchez-Romero MA, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol. 2015;25:9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. This was the first report of a human methylome at single-base resolution. Nature. 2009;462:315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pinney SE. Mammalian non-CpG methylation: stem cells and beyond. Biology. 2014;3(4):739–51.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics. 2014;9(6):823–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Norouzitallab P, Baruah K, Vanrompay D, Bossier P. Can epigenetics translate environmental cues into phenotypes? Sci Total Environ. 2018;647:1281–93.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103(5):1412–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics. 1992;13:1095–107.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhu J, He F, Hu S, Yu J. On the nature of human housekeeping genes. Trends Genet. 2008;24:481–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dan J, Chen T. Genetic studies on mammalian DNA methyltransferases. Adv Exp Med Biol. 2016;945:123–50.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13:7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Guo F, Li X, Liang D, Li T, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15:447–59.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development. 2012;139:15–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res. 2015;27:84–97.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Penn NW, Suwalski R, O'Riley C, Bojanowski K, Yura R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J. 1972;126:781–90.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Naveh-Many T, Cedar H. Active gene sequences are undermethylated. Proc Natl Acad Sci U S A. 1981;78(7):4246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Waechter DE, Baserga R. Effect of methylation on expression of microinjected genes. Proc Natl Acad Sci U S A. 1982;79:1106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Griffith JS, Mahler HR. DNA ticketing theory of memory. Nature. 1969;223:580–2.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Koh KP, Yabuuchi A, Rao S, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 2011;8:200–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Jones PA. Effects of 5-azacytidine and its 2’-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther. 1985;28:17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jones PA. Altering gene expression with 5-azacytidine. Cell. 1985;40:485–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Keshet I, Yisraeli J, Cedar H. Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci U S A. 1985;82:2560–4.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yisraeli J, Frank D, Razin A, Cedar H. Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci. 1988;85:4638–42.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kass SU, Goddard JP, Adams RL. Specific methylation of vector sequences inhibits transcription from the SV40 early promoter. Biochem Soc Trans. 1993;21:9.CrossRefGoogle Scholar
  41. 41.
    Seelan RS, Mukhopadhyay P, Pisano MM, Greene RM. Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 2018;50:193–207.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yan X, Ehnert S, Culmes M, et al. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PLoS One. 2014;9:90846.CrossRefGoogle Scholar
  43. 43.
    Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008;65:1509–22.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sasai N, Defossez PA. Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. Int J Dev Biol. 2009;53:323–34.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Singal R, Ginder GD. DNA methylation. Blood. 1999;93:4059–70.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988;2:1136–43.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64:1123–34.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Yin Y, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Huang B, Jiang C, Zhang R. Epigenetics: the language of the cell? Epigenomics. 2014;6:73–88.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bellizzi D, D’aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20:537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion. 2014;18:58–62.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab. 2013;110:25–34.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Shock LS, Thakkar PV, Peterson EJ, et al. DNA TSM methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108(9):3630–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rebelo AP, Williams S, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res. 2009;37:6701–15.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett. 2015;589(20 Pt A):2914–22.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet. 2010;11:285–96.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem Pharmacol. 2006;72:1563–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harbor Perspect Biol. 2010;2:596.CrossRefGoogle Scholar
  60. 60.
    Fazary AE, Ju YH, Abd-Rabboh HSM. How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol. 2017;101:862–81.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta. 2014;1839:728–36.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32:42–56.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications—writers that read. EMBO Rep. 2015;16:1467–81.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wang R, Xin M, Li Y, Zhang P, Zhang M. The functions of histone modification enzymes in cancer. Curr Protein Pept Sci. 2016;17:438–45.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep. 2015;16:1620–39.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem. 2008;389:353–63.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutat Res. 2008;647:68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S. Histone modifications and nuclear architecture a review. J Histochem Cytochem. 2008;56(8):711–21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Maleszewska M, Mawer JSP, Tessarz P. Histone modifications in ageing and lifespan regulation. Curr Mol Biol Rep. 2016;2(1):26–35.CrossRefGoogle Scholar
  73. 73.
    Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014;6:18762.CrossRefGoogle Scholar
  74. 74.
    Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:18713.CrossRefGoogle Scholar
  75. 75.
    Voss AK, Thomas T. Histone lysine and genomic targets of histone acetyltransferases in mammals. Bioessays. 2018;40(10):e1800078.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenet. 2016;8:59.CrossRefGoogle Scholar
  77. 77.
    Kirkland JG, Raab JR, Kamakaka RT. TFIIIC bound DNA elements in nuclear organization and insulation. Biochim Biophys Acta Gene Regul Mech. 2013;1829:418–24.CrossRefGoogle Scholar
  78. 78.
    Marmorstein R, Roth SY. Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev. 2001;11:155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta. 2009;1789:45–57.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Richon VM, Johnston D, Sneeringer CJ, et al. Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des. 2011;78:199–210.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jahan S, Davie JR. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul. 2015;57:173–84.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kimura H. Histone modifications for human epigenome analysis. J Hum Genet. 2013;58:439–45.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci. 2016;107:1187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shi Y, Lan F, Matson C, Mulligan P. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. J Chem Soc Faraday Trans. 1994;90:533–9.CrossRefGoogle Scholar
  86. 86.
    Anand R, Marmorstein R. Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem. 2007;282:35425–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Nan X, Ng HH, Johnson CA, Laherty CD, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J. 2009;50:455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang J, Hevi S, Kurash JK, Lei H, Gay F, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009;41:125–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839:1362–72.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fiannaca A, La Rosa M, La Paglia L, Rizzo R, Urso A. NRC: non-coding RNA classifier based on structural features. BioData Min. 2017;10:27.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell. 2016;7:100–13.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O, Gu T, et al. Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 2018;46:5737–52.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Young-Kook K, Boseon K, Narry Kim V. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A. 2016;113(13):E1881–9.CrossRefGoogle Scholar
  97. 97.
    Zhang F, Wang D. The pattern of microRNA binding site distribution. Genes. 2017;8:296.PubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA. 2010;16:2493–502.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M. Impact of MicroRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell. 2016;64:565–79.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Webster MW, Stowell JAW, Tang TTL, Passmore LA. Analysis of mRNA deadenylation by multi-protein complexes. Methods. 2017;126:95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achievem Life Sci. 2016;10(2):175–86.CrossRefGoogle Scholar
  102. 102.
    Jung HJ, Suh Y. Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics. 2014;41:465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jose AM. Movement of regulatory RNA between animal cells. Genesis. 2015;53:395–416.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hayashi T, Hoffman MP. Exosomal microRNA communication between tissues during organogenesis. RNA Biol. 2017;14:1683–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones. Mol Oncol. 2017;11:1673–86.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell. 1999;96:291–302.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kirkwood TBL. Understanding the odd science of aging. Cell. 2005;120:437–47.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Sebastiani P, Solovieff N, Dewan AT, Walsh KM, et al. Genetic signatures of exceptional longevity in humans. PLoS One. 2012;7:29848.CrossRefGoogle Scholar
  109. 109.
    Montesanto A, Dato S, Bellizzi D, Rose G, Passarino G. Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity. Immun Ageing. 2012;9:6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    D’Aquila P, Rose G, Bellizzi D, Passarino G. Epigenetics and aging. Maturitas. 2013;74:130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:1600584.CrossRefGoogle Scholar
  113. 113.
    Li Y, Tollefsbol TO. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics. 2016;8:1637–51.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–32.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zampieri M, Ciccarone F, Calabrese R, et al. Reconfiguration of DNA methylation in aging. Mech Ageing Dev. 2015;151:60–70.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Guarasci F, D'Aquila P, Mandalà M, Garasto S, et al. Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mech Ageing Dev. 2018;174:47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Amodio N, D'Aquila P, Passarino G, et al. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin Ther Targets. 2017;21:91–101.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Martin GM. Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A. 2005;102:10413–4.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lipman T, Tiedje LB. Epigenetic differences arise during the lifetime of monozygotic twins. Am J Matern Nurs. 2006;31:204.Google Scholar
  120. 120.
    Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bell JT, Spector TD. A twin approach to unraveling epigenetics. Trends Genet. 2011;27:116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Tan Q, Christiansen L, Thomassen M, et al. Twins for epigenetic studies of human aging and development. Ageing Res Rev. 2013;12:182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Mendelsohn AR, Larrick JW. Epigenetic drift is a determinant of mammalian lifespan. Rejuvenation Res. 2017;20:430–6.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Slieker RC, van Iterson M, Luijk R, et al. Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biol. 2016;7:191.CrossRefGoogle Scholar
  125. 125.
    Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Invest. 2014;124:24–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Teschendorff AE, Menon U, Gentry-Maharaj A, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20:440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bacalini MG, D’Aquila P, Marasco E, Nardini C, Montesanto A, Franceschi C, Passarino G, Garagnani P, Bellizzi D. The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mech Ageing Dev. 2017;165:156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Rakyan VK, Down TA, Maslau S, Andrew T, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bell JT, Tsai PC, Yang TP, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8(4):e1002629.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics. 2017;18:385–407.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhang Z, Deng C, Lu Q, Richardson B. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech Ageing Dev. 2002;123:1257–68.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Vijg J, Dollé ME. Genome instability: cancer or aging? Mech Ageing Dev. 2007;128:466–8.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bollati V, Schwartz J, Wright R, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–9.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. 2010;41:194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Wei L, Liu B, Tuo J, Shen D, et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep. 2012;2(5):1151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. 2012;109:10522–7.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Bellizzi D, D’aquila P, Giordano M, Montesanto A, Passarino G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics. 2012;4:17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Bellizzi D, D'Aquila P, Montesanto A, Corsonello A, et al. Global DNA methylation in old subjects is correlated with frailty. Age. 2012;34:169–79.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    D’Aquila P, Bellizzi D, Passarino G. rRNA-gene methylation and biological aging. Aging (Albany NY). 2018;10:7–8.CrossRefGoogle Scholar
  140. 140.
    D'Aquila P, Montesanto A, Mandalà M, Garasto S, et al. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. Aging Cell. 2017;16:966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PLoS One. 2011;6:14821.CrossRefGoogle Scholar
  142. 142.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Christiansen L, Lenart A, Tan Q, et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2016;15:149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Perna L, Zhang Y, Mons U, et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenet. 2016;8:64.CrossRefGoogle Scholar
  147. 147.
    Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10:573–91.CrossRefGoogle Scholar
  148. 148.
    Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol. 2015;93:226–32.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Huidobro C, Fernandez AF, Fraga MF. Aging epigenetics: causes and consequences. Mol Aspects Med. 2013;34:765–81.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Lillycrop KA, Burdge GC. Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis. 2015;6:88–95.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6:2165–78.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Park JH, Kim SH, Lee MS, Kim MS. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol Aspects Med. 2017;54:58–70.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES. Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol. 2007;36:1196–204.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Stein AD, Pierik FH, Verrips GHW, Susser ES, Lumey LH. Maternal exposure to the Dutch famine before conception and during pregnancy: quality of life and depressive symptoms in adult offspring. Epidemiology. 2009;20:909–15.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    D’Aquila P, Montesanto A, Guarasci F, Passarino G, Bellizzi D. Mitochondrial genome and epigenome: two sides of the same coin. Front Biosci (Landmark Ed). 2017;22:888–908.CrossRefGoogle Scholar
  156. 156.
    D'Aquila P, Giordano M, Montesanto A, et al. Age-and gender-related pattern of methylation in the MT-RNR1 gene. Epigenomics. 2015;7:707–16.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Truong TP, Sakata-Yanagimoto M, Yamada M, et al. Influence of age-dependent decrease of DNA hydroxymethylation in human T cells. J Clin Exp Hematopathol. 2015;55:1–6.CrossRefGoogle Scholar
  158. 158.
    Szulwach KE, Li X, Li Y, Song CX, et al. 5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging Keith. Nat Neurosci. 2012;14:1607–16.CrossRefGoogle Scholar
  159. 159.
    Chouliaras L, van den Hove DL, Kenis G, et al. Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction. Curr Alzheimer Res. 2012;9:536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Dzitoyeva S, Chen H, Manev H. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging. 2012;33:2881–91.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kochmanski J, Marchlewicz EH, Cavalcante RG, Sartor MA, Dolinoy DC. Age-related epigenome-wide DNA methylation and hydroxymethylation in longitudinal mouse blood. Epigenetics. 2018;13(7):779–92.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett. 2011;585:2041–8.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Wang Y, Yuan Q, Xie L. Histone modifications in aging: the underlying mechanisms and implications. Curr Stem Cell Res Ther. 2018;13:125–35.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Dimauro T, David G. Chromatin modifications: the driving force of senescence and aging? Aging (Albany NY). 2009;1:182–90.CrossRefGoogle Scholar
  165. 165.
    Das C, Tyler JK. Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta. 2013;1819:332–42.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta. 2014;1839:1454–62.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30:271–86.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta. 2015;1852:2442–55.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Wątroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res Rev. 2017;40:11–9.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL. Histone H4 lysine-16 acetylation regulates cellular lifespan. Nature. 2009;459(7248):802–7.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 2010;9:162–73.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483:218–21.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–29.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Peleg S, Sananbenesi F, Zovoilis A, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010;328:753–6.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Herranz D, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer syndrome. Nat Commun. 2010;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–76.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–2.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27:8807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nakagawa H, Nuovo GJ, Zervos EE, Martin EW Jr, Salovaara R, Aaltonen LA, de la Chapelle A. Age-related hypermethylation of the 5' region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res. 2001;61:6991–5.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Pedersen SB, Ølholm J, Paulsen SK, Bennetzen MF, Richelsen B. Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int J Obes (Lond). 2008;32:1250–5.CrossRefGoogle Scholar
  181. 181.
    Costa Cdos S, Hammes TO, Rohden F, Margis R, Bortolotto JW, Padoin AV, Mottin CC, Guaragna RM. SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes Surg. 2010;20:633–9.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Chalkiadaki A, Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol. 2012;8:287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Someya S, Tanokura M, Weindruch R, Prolla TA, Yamasoba T. Effects of caloric restriction on age-related hearing loss in rodents and rhesus monkeys. Curr Aging Sci. 2010;3:20–5.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–63.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007;26:1913–23.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8:347–58.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14:661–73.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Hallows WC, Yu W, Denu JM. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem. 2012;287:3850–8.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013;27:2072–85.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Basile G, Agodi A. Resveratrol Modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci. 2018;19:2118.PubMedCentralCrossRefGoogle Scholar
  193. 193.
    De Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol. 2010;20:2159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep. 2016;6:36766.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Smith-Vikos T, Liu Z, Parsons C, Gorospe M, Ferrucci L, Gill TM, Slack FJ. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Ageing (BLSA). Ageing (Albany NY). 2016;8:2971–83.Google Scholar
  196. 196.
    Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27:1859–67.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-ageing: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol. 2014;56:154–63.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Rose G, Santoro A, Salvioli S. Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev. 2017;165:115–28.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-ageing, cellular senescence and cancer. Ageing Res Rev. 2013;12:1056–68.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Baradan R, Hollander JM, Das S. Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Can J Physiol Pharmacol. 2017;95:1156–62.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Wu S, Kim T-K, Wu X, Scherler K, Baxter D, Wang K, Krasnow RE, Reed T, Dai J. Circulating microRNAs and life expectancy among identical twins. Ann Human Genet. 2016;80:247–56.CrossRefGoogle Scholar
  202. 202.
    Micó V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging. Int J Mol Sci. 2017;18:915.PubMedCentralCrossRefGoogle Scholar
  203. 203.
    Kurylowicz A, Owczarz M, Polosak J, Jonas MI, Lisik W, Jonas M, Chmura A, Puzianowska-Kuznicka M. SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. Int J Obes (Lond). 2016;40:1635–42.CrossRefGoogle Scholar
  204. 204.
    Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget. 2018;9:17220–37.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci. 2014;69:S17–20.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Jiang W, Li J, Zhang Z, Wang H, Wang Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur J Pharmacol. 2014;745:243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Brown DM, Goljanek-Whysall K. microRNAs: modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev. 2015;24:263–73.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Jingjing F, Xianjuan K, Yi Y, Ning C. MicroRNA-regulated proinflammatory cytokines in sarcopenia. Mediators Inflamm. 2016;2016:1438686.Google Scholar
  211. 211.
    Shinde S, Mukhopadhyay S, Mohsen G, Khoo SK. Biofluid-based microRNA biomarkers for Parkinson’s disease: an overview and update. AIMS Med Sci. 2015;2:15–25.CrossRefGoogle Scholar
  212. 212.
    Shah P, Cho SK, Thulstrup PW, Bjerrum MJ, Lee PH, Kang JH, Bhang YJ, Yang SW. MicroRNA biomarkers in neurodegenerative diseases and emerging nanosensors technology. J Mov Disorders. 2017;10:18–28.CrossRefGoogle Scholar
  213. 213.
    Schulte C, Zeller T. microRNA-based diagnostics and therapy in cardiovascular disease—summing up the facts. Cardiovasc Diagn Ther. 2015;5:17–36.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med. 2010;14:2495–505.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C, Wang P, Zou MH, Wang DW. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol. 2015;230:1964–73.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Alavi-Moghaddam M, Chehrazi M, Alipoor SD, Mohammadi M, Baratloo A, Mahjoub MP, Movasaghi M, Garssen J, Adcock IM, Mortaz E. A preliminary study of microRNA-208b after acute myocardial infarction: impact on 6-month survival. Dis Markers. 2018;2018:2410451.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Schulte C, Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem. 2009;55(11):1944–9.CrossRefGoogle Scholar
  218. 218.
    Reynolds LM, Taylor JR, Ding J, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014;5:5366.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    McClay JL, Aberg KA, Clark SL, et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet. 2014;23(5):1175–85.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Choi EK, Uyeno S, Nishida N, et al. Alterations of c-fos gene methylation in the processes of aging and tumorigenesis in human liver. Mutat Res. 1996;354(1):123–8.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Issa JP, Vertino PM, Boehm CD, et al. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci U S A. 1996;93(21):11757–62.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58(23):5489–94.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Vidal AC, Benjamin Neelon SE, Liu Y. Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genet Epigenet. 2014;6:37–44.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Nakagawa H, Nuovo GJ, Zervos EE, et al. Age-related hypermethylation of the 5' region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res. 2001;61(19):6991–5.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Matsubayashi H, Sato N, Brune K, et al. Age- and disease-related methylation of multiple genes in nonneoplastic duodenum and in duodenal juice. Clin Cancer Res. 2005;11(2 Pt 1):573–83.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Silva PN, Gigek CO, Leal MF, et al. Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimers Dis. 2008;13(2):173–6.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Madrigano J, Baccarelli A, Mittleman MA, et al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics. 2012;7(1):63–70.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Rönn T, Poulsen P, Hansson O, et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia. 2008;51(7):1159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Gaudet MM, Campan M, Figueroa JD, et al. DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3036–43.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene. 1998;16(16):2159–64.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Cody DT, Huang Y, Darby CJ, et al. Differential DNA methylation of the p16 INK4A/CDKN2A promoter in human oral cancer cells and normal human oral keratinocytes. Oral Oncol. 1999;35(5):516–22.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000;25(3):315–9.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Virmani AK, Rathi A, Sathyanarayana UG, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res. 2001;7(7):1998–2004.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Waki T, Tamura G, Sato M, Motoyama T. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003;22(26):4128–33.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Sutherland KD, Lindeman GJ, Choong DY, et al. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004;23(46):7726–33.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    So K, Tamura G, Honda T, Homma N, et al. Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci. 2006;97(11):1155–8.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Nishida N, Nagasaka T, Nishimura T, et al. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology. 2008;47(3):908–18.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Yuan Y, Qian ZR, Sano T, et al. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. Mod Pathol. 2008;21(7):856–65.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Pilsner JR, Hall MN, Liu X, et al. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS One. 2012;7(5):e37147.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Majumdar S, Chanda S, Ganguli B, et al. Arsenic exposure induces genomic hypermethylation. Environ Toxicol. 2010;25(3):315–8.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Guo X, Chen X, Wang J, et al. Multi-generational impacts of arsenic exposure on genome-wide DNA methylation and the implications for arsenic-induced skin lesions. Environ Int. 2018;119:250–63.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Kaushal A, Zhang H, Karmaus WJJ. Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environ Health. 2017;16(1):50.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Cowley M, Skaar DA, Jima DD, et al. Effects of cadmium exposure on DNA methylation at imprinting control regions and genome-wide in mothers and newborn children. Environ Health Perspect. 2018;126(3):037003.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Hirao-Suzuki M, Takeda S, Kobayashi T, et al. Cadmium down-regulates apolipoprotein E (ApoE) expression during malignant transformation of rat liver cells: direct evidence for DNA hypermethylation in the promoter region of ApoE. J Toxicol Sci. 2018;43(9):537–43.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Virani S, Rentschler KM, Nishijo M, et al. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere. 2016;145:284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Wang TC, Song YS, Wang H, et al. Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater. 2012;213–214:440–6.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Yang L, Xia B, Yang X, et al. Mitochondrial DNA hypomethylation in chrome plating workers. Toxicol Lett. 2016;243:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Lou J, Wang Y, Yao C, et al. Role of DNA methylation in cell cycle arrest induced by Cr (VI) in two cell lines. PLoS One. 2013;8(8):e71031.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Cardenas A, Rifas-Shiman SL, Godderis L, et al. Prenatal exposure to mercury: associations with global DNA methylation and hydroxymethylation in cord blood and in childhood. Environ Health Perspect. 2017;125(8):087022.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Cardenas A, Rifas-Shiman SL, Agha G, et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep. 2017;7(1):288.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Goodrich JM, Basu N, Franzblau A, Dolinoy DC. Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen. 2013;54(3):195–203.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Zhang X, Chen X, Weirauch MT, et al. Diesel exhaust and house dust mite allergen lead to common changes in the airway methylome and hydroxymethylome. Environ Epigenet. 2018;4(3):dvy020.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Ghosh K, Chatterjee B, Kanade SR. Lead induces the up-regulation of the protein arginine methyltransferase 5 possibly by its promoter demethylation. Biochem J. 2018;475(16):2653–66.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Liu X, Wu J, Shi W, et al. Lead induces genotoxicity via oxidative stress and promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells. Med Sci Monitor. 2018;24:4295–304.CrossRefGoogle Scholar
  256. 256.
    Cheong A, Johnson SA, Howald EC, et al. Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics. 2018;13(7):704–20.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Mostafavi N, Vermeulen R, Ghantous A, et al. Acute changes in DNA methylation in relation to 24 h personal air pollution exposure measurements: a panel study in four European countries. Environ Int. 2018;120:11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Maghbooli Z, Hossein-Nezhad A, Adabi E, et al. Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 2018;13(7):e0199772.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Nawrot TS, Saenen ND, Schenk J, et al. Placental circadian pathway methylation and in utero exposure to fine particle air pollution. Environ Int. 2018;114:231–41.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Li J, Zhu X, Yu K, et al. Exposure to polycyclic aromatic hydrocarbons and accelerated DNA methylation aging. Environ Health Perspect. 2018;126(6):067005.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Lee J, Kalia V, Perera F, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int. 2017;99:315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    White AJ, Chen J, Teitelbaum SL, et al. Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer. Environ Res. 2016;145:93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    White N, Benton M, Kennedy D, et al. Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm. PLoS One. 2017;12(9):e0182455.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Prince C, Hammerton G, Taylor AE, et al. Investigating the impact of cigarette smoking behaviours on DNA methylation patterns in adolescence. Hum Mol Genet. 2019;28(1):155–65.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Witt SH, Frank J, Gilles M, et al. Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation. BMC Genomics. 2018;19(1):290.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Cole E, Brown TA, Pinkerton KE, et al. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model. Inhal Toxicol. 2017;29(10):435–42.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Sziráki A, Tyshkovskiy A, Gladyshev VN. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell. 2018;17(3):e12738.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Kim CH, Lee EK, Choi YJ, et al. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell. 2016;15(6):1074–81.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Chen PY, Ganguly A, Rubbi L, et al. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics. 2013;45(14):565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Pauwels S, Ghosh M, Duca RC, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenet. 2017;9:16.CrossRefGoogle Scholar
  271. 271.
    Pauwels S, Duca C, Devlieger R, et al. Maternal methyl-group donor intake and global DNA (hydroxy)methylation before and during pregnancy. Nutrients. 2016;8(8):474.PubMedCentralCrossRefGoogle Scholar
  272. 272.
    Kok DE, Dhonukshe-Rutten R, Lute C, et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenet. 2015;7:121.CrossRefGoogle Scholar
  273. 273.
    Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Anderson CM, Gillespie SL, Thiele DK, et al. Effects of maternal vitamin D supplementation on the maternal and infant epigenome. Breastfeed Med. 2018;13(5):371–80.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Zappe K, Pointner A, Switzeny OJ, et al. Counteraction of oxidative stress by vitamin E affects epigenetic regulation by increasing global methylation and gene expression of MLH1 and DNMT1 dose dependently in Caco-2 cells. Oxid Med Cell Longev. 2018;2018:3734250.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Ramaiyan B, Talahalli RR. Dietary unsaturated fatty acids modulate maternal dyslipidemia-induced DNA methylation and histone acetylation in placenta and fetal liver in rats. Lipids. 2018;53(6):581–8.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Moody L, Chen H, Pan YX. Postnatal diet remodels hepatic DNA methylation in metabolic pathways established by a maternal high-fat diet. Epigenomics. 2017;9(11):1387–402.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Zhang Y, Wang H, Zhou D, et al. High-fat diet caused widespread epigenomic differences on hepatic methylome in rat. Physiol Genomics. 2015;47(10):514–23.PubMedCrossRefGoogle Scholar
  279. 279.
    Nakatome M, Orii M, Hamajima M, et al. Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Legal Med (Tokyo). 2011;13(4):205–9.CrossRefGoogle Scholar
  280. 280.
    Jiang W, Li J, Zhang Z, et al. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur J Pharmacol. 2014;745:243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Itzhak Y, Ergui I, Young JI. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol Psychiatry. 2015;20(2):232–9.PubMedCrossRefGoogle Scholar
  282. 282.
    Jayanthi S, McCoy MT, Chen B, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol Psychiatry. 2014;76(1):47–56.PubMedCrossRefGoogle Scholar
  283. 283.
    Anier K, Malinovskaja K, Aonurm-Helm A, et al. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology. 2010;35(12):2450–61.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Pol Bodetto S, Carouge D, Fonteneau M, et al. Cocaine represses protein phosphatase-1Cβ through DNA methylation and methyl-CpG binding protein-2 recruitment in adult rat brain. Neuropharmacology. 2013;73:31–40.PubMedCrossRefGoogle Scholar
  285. 285.
    Tian W, Zhao M, Li M, et al. Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One. 2012;7:e33435.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Carouge D, Host L, Aunis D, et al. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis. 2010;38(3):414–24.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Ajonijebu DC, Abboussi O, Mabandla MV, et al. Differential epigenetic changes in the hippocampus and prefrontal cortex of female mice that had free access to cocaine. Metab Brain Dis. 2018;33(2):411–20.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Ebrahimi G, Asadikaram G, Akbari H, et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am J Drug Alcohol Abuse. 2018;44(2):193–9.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Chorbov VM, Todorov AA, Lynskey MT, et al. Elevated levels of DNA methylation at the OPRM1 promoter in blood and sperm from male opioid addicts. J Opioid Manag. 2011;7(4):258–64.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    McLaughlin P, Mactier H, Gillis C, et al. Increased DNA methylation of ABCB1, CYP2D6, and OPRM1 genes in newborn infants of methadone-maintained opioid-dependent mothers. J Pediatrics. 2017;190:180–184.e1.CrossRefGoogle Scholar
  291. 291.
    Groh A, Rhein M, Buchholz V, et al. Epigenetic effects of intravenous diacetylmorphine on the methylation of POMC and NR3C1. Neuropsychobiology. 2017;75(4):193–9.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Groh A, Jahn K, Burkert A, et al. Epigenetic regulation of the promotor region of vascular endothelial growth factor-A and nerve growth factor in opioid-maintained patients. Eur Addict Res. 2017;23(5):249–59.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Watson CT, Szutorisz H, Garg P, et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology. 2015;40(13):2993–3005.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Gerra MC, Jayanthi S, Manfredini M, et al. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl Psychiatry. 2018;8(1):23.PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Taqi MM, Bazov I, Watanabe H, et al. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol. 2011;16(3):499–509.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Philibert RA, Gunter TD, Beach SR, et al. MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet Part B Neuropsychiatric Genet. 2008;147B(5):565–70.CrossRefGoogle Scholar
  297. 297.
    Glahn A, Riera Knorrenschild R, Rhein M, et al. Alcohol-induced changes in methylation status of individual CpG sites, and serum levels of vasopressin and atrial natriuretic peptide in alcohol-dependent patients during detoxification treatment. Eur Addict Res. 2014;20(3):143–50.PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Foroud T, Wetherill LF, Liang T, et al. Association of alcohol craving with alpha-synuclein (SNCA). Alcohol Clin Exp Res. 2007;31(4):537–45.PubMedPubMedCentralGoogle Scholar
  299. 299.
    Ji C, Nagaoka K, Zou J, et al. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB J. 2019;33(2):1824–35.PubMedCrossRefPubMedCentralGoogle Scholar
  300. 300.
    Frey S, Eichler A, Stonawski V, et al. Prenatal alcohol exposure is associated with adverse cognitive effects and distinct whole-genome DNA methylation patterns in primary school children. Front Behav Neurosci. 2018;12:125.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Brückmann C, Islam SA, MacIsaac JL, et al. DNA methylation signatures of chronic alcohol dependence in purified CD3+ T-cells of patients undergoing alcohol treatment. Sci Rep. 2017;7(1):6605.PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Weng JT, Wu LS, Lee CS, et al. Integrative epigenetic profiling analysis identifies DNA methylation changes associated with chronic alcohol consumption. Comput Biol Med. 2015;64:299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  303. 303.
    Heberlein A, Muschler M, Frieling H, et al. Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict Biol. 2013;18(3):508–10.PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Brückmann C, Di Santo A, Karle KN, et al. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics. 2016;11(6):456–63.PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Jasiewicz A, Rubiś B, Samochowiec J, et al. DAT1 methylation changes in alcohol-dependent individuals vs. controls. J Psychiatric Res. 2015;64:130–3.CrossRefGoogle Scholar
  306. 306.
    Fiano V, Trevisan M, Fasanelli F, et al. Methylation in host and viral genes as marker of aggressiveness in cervical lesions: analysis in 543 unscreened women. Gynecol Oncol. 2018;151(2):319–26. pii: S0090-8258(18)31161-2PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Jin J, Xu H, Wu R, et al. Aberrant DNA methylation profile of hepatitis B virus infection. J Med Virol. 2019;91(1):81–92.PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Nunes JM, Furtado MN, de Morais Nunes ER, et al. Modulation of epigenetic factors during the early stages of HIV-1 infection in CD4+ T cells in vitro. Virology. 2018;523:41–51.PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Gao X, Zhang Y, Brenner H. Associations of Helicobacter pylori infection and chronic atrophic gastritis with accelerated epigenetic ageing in older adults. Br J Cancer. 2017;117(8):1211–4.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Gupta H, Chaudhari S, Rai A, et al. Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLoS One. 2017;12(4):e0175702.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Mehta D, Bruenig D, Carrillo-Roa T, et al. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr Scand. 2017;136(5):493–505.PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Peng H, Zhu Y, Strachan E, et al. Childhood trauma, DNA methylation of stress-related genes, and depression: findings from two monozygotic twin studies. Psychosom Med. 2018;80(7):599–608.PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Wolf EJ, Logue MW, Morrison FG, et al. Posttraumatic psychopathology and the pace of the epigenetic clock: a longitudinal investigation. Psychol Med. 2018;13:1–10.Google Scholar
  314. 314.
    Song D, Qi W, Lv M, et al. Combined bioinformatics analysis reveals gene expression and DNA methylation patterns in osteoarthritis. Mol Med Rep. 2018;17(6):8069–78.PubMedPubMedCentralGoogle Scholar
  315. 315.
    Hughes A, Smart M, Gorrie-Stone T, Het a. Socioeconomic position and DNA methylation age acceleration across the lifecourse. Am J Epidemiol. 2018;187(11):2346–54.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Swartz JR, Hariri AR, Williamson DE. An epigenetic mechanism links socioeconomic status to changes in depression-related brain function in high-risk adolescents. Mol Psychiatry. 2017;22(2):209–14.PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Chan MA, Ciaccio CE, Gigliotti NM, et al. DNA methylation levels associated with race and childhood asthma severity. J Asthma. 2017;54(8):825–32.PubMedCrossRefPubMedCentralGoogle Scholar
  318. 318.
    Tehranifar P, Wu HC, Fan X, et al. Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics. 2013;8(1):23–7.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Jovanović I, Zˇivkovic´ M, Jovanović J, et al. The co-inertia approach in identification of specific microRNA in early and advanced atherosclerosis plaque. Med Hypotheses. 2014;83:11–5.PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Macha MA, Seshacharyulu P, Krishn SR, et al. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des. 2014;20(33):5287–97.PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Williams AH, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326:1549–54.PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Hudson MB, Rahnert JA, Zheng B, et al. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol. 2014;307:C314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Vickers KC, Landstreet SR, Levin MG, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111(40):14518–23.PubMedPubMedCentralCrossRefGoogle Scholar
  325. 325.
    Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis—“Mechanosensitive Athero-miRs”. Arterioscler Thromb Vasc Biol. 2014;34(10):2206–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dina Bellizzi
    • 1
  • Francesco Guarasci
    • 1
  • Francesca Iannone
    • 1
  • Giuseppe Passarino
    • 1
    Email author
  • Giuseppina Rose
    • 1
  1. 1.Department of Biology, Ecology and Earth ScienceUniversity of CalabriaRendeItaly

Personalised recommendations