Advertisement

Pool Boiling Enhancement Techniques

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Pool boiling enhancement techniques with all their aspects have been presented in this chapter. Many different types of textured surfaces like abrasives, open groves, three-dimensional cavities, electroplating, attached wire and screen promoters, pierced three-dimensional cover sheets, etched surfaces, coatings, porous surfaces, structured surfaces, combined structured and porous surfaces and composite surfaces have been discussed in detail. Pool boiling tests of enhanced surfaces have also been discussed. Fundamental theory, effects of boiling hysteresis and orientation, boiling mechanism and models for structured surfaces and porous surfaces, critical heat flux (CHF) and thin film evaporation have all been included.

Keywords

Pool boiling Enhancement techniques Boiling hysteresis CHF Models Thin film evaporation 

References

  1. Albertson CE, inventor; Borg-Warner Corp, assignee (1977) Boiling heat transfer surface and method. United States Patent US 4,018,264Google Scholar
  2. Antonelli R, O’Neill PS (1981) Design and application considerations heat exchangers with enhanced boiling surfaces. In: Sourcebook JP (ed) Heat exchanger. Hemisphere, Washington, DCGoogle Scholar
  3. Arai N (1977) Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine. ASHRAE Trans 83(2):58–69Google Scholar
  4. Arias FJ, Reventos F (2010) Heat transfer enhancement in film boiling due to lift forces on the Taylor-Helmholtz instability in low forced convection from a horizontal surface. J Enhanc Heat Transf 17(2):197CrossRefGoogle Scholar
  5. Arshad J, Thome JR (1983) Enhanced boiling surfaces: heat transfer mechanism and mixture boiling. Proc ASME-JSME Therm Eng Joint Conf 1(1):191–197Google Scholar
  6. Asakavicius JP, Zukauskas AA, Gaigolis VA, Eva VK (1979) Heat transfer from freon-113, ethyl alcohol and water with screen wicks. Heat Transf Soviet Res 11(1):92–100Google Scholar
  7. Ayub ZH, Bergles AE (1987) Pool boiling from GEWA surfaces in water and R-113. Wärme-und Stoffübertragung 21(4):209–219CrossRefGoogle Scholar
  8. Ayub ZH, Bergles AE (1990) Nucleate pool boiling curve hysteresis for GEWA-T surfaces in saturated R-113. Exp Thermal Fluid Sci 3(2):249–255CrossRefGoogle Scholar
  9. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48(12):2407–2419CrossRefGoogle Scholar
  10. Bar-Cohen A (1992) Hysteresis phenomena at the onset of nucleate boiling. In: Dhir VK, Bergles AE (eds) Pool and external flow boiling. American Society of Mechanical Engineers, New York, pp 1–4Google Scholar
  11. Bell KJ, Mueller AC (1984) Engineering data book II. Wolverine TubeGoogle Scholar
  12. Bergles AE, Bakhru N, Shires JW (1968) Cooling of high-power-density computer components. MIT Heat Transfer Laboratory, Cambridge, MSGoogle Scholar
  13. Bergles AE, Chyu MC (1982) Characteristics of nucleate pool boiling from porous metallic coatings. J Heat Transf 104(2):279–285CrossRefGoogle Scholar
  14. Bi J et al (2015) Heat transfer characteristics and CHF prediction in nano-fluid boiling. Int J Heat Mass Transf 80:256–265CrossRefGoogle Scholar
  15. Bliss FE Jr, Hsu ST, Crawford M (1969) An investigation into the effects of various platings on the film coefficient during nucleate boiling from horizontal tubes. Int J Heat Mass Transf 12(9):1061–1072CrossRefGoogle Scholar
  16. Bolukbasi A, Ciloglu D (2011) Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2–water nanofluids. Int J Therm Sci 50(6):1013–1021CrossRefGoogle Scholar
  17. Bonilla CF, Grady JJ, Avery GW (1965) Pool boiling heat transfer from scored surfaces. Chem Eng Progress Symp Ser 61(57):280–288Google Scholar
  18. Brothers WS, Kallfelz AJ (1979) Heat transfer surface and method of manufacture. US Patent 4,159,739Google Scholar
  19. Carey VP (1992) Liquid-vapor phase-change phenomena. Hemisphere, Washington, DCGoogle Scholar
  20. Chang JY, You SM (1996) Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72. J Heat Transf 118(4):937–943CrossRefGoogle Scholar
  21. Chang JY, You SM (1997) Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72. Int J Heat Mass Transf 40(18):4437–4447CrossRefGoogle Scholar
  22. Chaudhri IH, McDougall IR (1969) Ageing studies in nucleate pool boiling of isopropyl acetate and perchloroethylene. Int J Heat Mass Transf 12(6):681–688CrossRefGoogle Scholar
  23. Chien L-H, Chang C-C (2003) Enhancement of pool boiling on structured surfaces using HFC-4310 and water. J Enhanc Heat Transf 11:23–44CrossRefGoogle Scholar
  24. Chien LH, Chang CC (2004) Enhancement of pool boiling on structured surfaces using HFC-4310 and water. J Enhanc Heat Transf 11(1):23MathSciNetCrossRefGoogle Scholar
  25. Chien LH, Chen CL (2000) An experimental study of boiling enhancement in a small boiler. In: 2000 national heat transfer conference, Pittsburgh, PAGoogle Scholar
  26. Chien LH, Hwang HL (2012) An experimental study of boiling heat transfer enhancement of mesh-on-fin tubes. J Enhanc Heat Transf 19(1):75CrossRefGoogle Scholar
  27. Chien LH, Webb RL (1998a) A parametric study of nucleate boiling on structured surfaces, part I: effect of tunnel dimensions. J Heat Transf 120(4):1042–1048CrossRefGoogle Scholar
  28. Chien LH, Webb RL (1998b) A parametric study of nucleate boiling on structured surfaces, part II: effect of pore diameter and pore pitch. J Heat Transf 120(4):1049–1054CrossRefGoogle Scholar
  29. Chien LH, Webb RL (1998c) Visualization of pool boiling on enhanced surfaces. Exp Thermal Fluid Sci 16(4):332–341CrossRefGoogle Scholar
  30. Chien LH, Webb RL (1998d) Measurement of bubble dynamics on an enhanced boiling surface. Exp Thermal Fluid Sci 16(3):177–186CrossRefGoogle Scholar
  31. Chien LH, Webb RL (1998e) A nucleate boiling model for structured enhanced surfaces. Int J Heat Mass Transf 41(14):2183–2195zbMATHCrossRefGoogle Scholar
  32. Chien LH, Webb RL (2001) Effect of geometry and fluid property parameters on performance of tunnel and pore enhanced boiling surfaces. J Enhanc Heat Transf 8(5):329CrossRefGoogle Scholar
  33. Chu RC, Moran KP, inventors; International Business Machines Corp, assignee (1977) Method for customizing nucleate boiling heat transfer from electronic units immersed in dielectric coolant. United States Patent US 4,050,507Google Scholar
  34. Cieśliński JT (2002) Nucleate pool boiling on porous metallic coatings. Exp Thermal Fluid Sci 25(7):557–564CrossRefGoogle Scholar
  35. Corman JC, McLaughlin MH (1976) Boiling augmentation with structured surfaces. ASHRAE Trans 82(1):906–918Google Scholar
  36. Czikk AM, O’Neill PS (1979) Correlation of nucleate boiling from porous metal films. In: Advances in enhanced heat transfer. ASME, New York, pp 103–113Google Scholar
  37. Dahl MM, Erb LD, Inventors; Gates Rubber Co, assignee (1976) Liquid heat exchanger interface and method. United States Patent US 3,990,862Google Scholar
  38. Danilova GN, Tikhonov AV (1996) R113 boiling heat transfer modeling on porous metallic matrix surfaces. Int J Heat Fluid Flow 17(1):45–51CrossRefGoogle Scholar
  39. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862zbMATHCrossRefGoogle Scholar
  40. Dizon MB, Yang J, Cheung FB, Rempe JL, Suh KY, Kim SB (2004) Effects of surface coating on the critical heat flux for pool boiling from a downward facing surface. J Enhanc Heat Transf 11(2):133CrossRefGoogle Scholar
  41. Dundin VA, Danilova GN, Tikhonov AV (1990) Enhanced heat transfer surfaces for shell-andtube evaporators of refrigerating machines. Refrig Mach Ser XM-7:1–46. (in Russian)Google Scholar
  42. Faghri A (1995) Heat pipe science and technology. Global Digital PressGoogle Scholar
  43. Ferjancic K, Golobic I (2002) Surface effects on pool boiling CHF. Exp Thermal Fluid Sci 25:565–571CrossRefGoogle Scholar
  44. Fritz W (1935) Berechnung des maximalvolumes von dampfblasen. Phys Z 36:379–384Google Scholar
  45. Fujie K, Nakayama W, Kuwahara H, Kakizaki K, Inventors; Hitachi Cable Ltd, Hitachi Ltd, assignee (1977) Heat transfer wall for boiling liquids. United States Patent US 4,060,125Google Scholar
  46. Fujii M, Nishiyama E, Yamanaka G (1979) Nucleate pool boiling heat transfer from micro-porous heating surfaces. In: Chenoweth JM, Kaellis J, Michel JW, Shenkman S (eds) Advances in enhanced heat transfer. ASME, New York, pp 45–51Google Scholar
  47. Gaertner RF, inventor; General Electric Co, assignee (1967) Method and means for increasing the heat transfer coefficient between a wall and boiling liquid. United States Patent US 3,301,314Google Scholar
  48. Ge X, Qu W, Zhang L, Ma T (2003) Evaporation heat transfer of thin liquid film and meniscus in micro capillary and on substrate with Nano relief. J Enhanc Heat Transf 10(2)Google Scholar
  49. Gerardi C, Buongiorno J, Hu LW, McKrell T (2011) Infrared thermometry study of nanofluid pool boiling phenomena. Nanoscale Res Lett 6(1):232CrossRefGoogle Scholar
  50. Gottzmann CF, ONeill PS, Minton PE (1973) High-efficiency heat-exchangers. Chem Eng Prog 69(7):69–75Google Scholar
  51. Gottzmann CF, Wulf JB, O’Neill PS (1971) Theory and application of high performance boiling surfaces to components of absorption cycle air conditioners. In: Proceedings conference national gas research technology session V paper, vol 3Google Scholar
  52. Grant AC, inventor; Union Carbide Corp, assignee (1977) Porous metallic layer and formation. United States Patent US 4,064,914Google Scholar
  53. Griffith P, Wallis JD (1960) The role of surface conditions in nucleate boiling. Chem Eng Prog Symp Ser 56(49):49–63Google Scholar
  54. Guglielmini G, Misale M, Schenone C, Pasquali C, Zappaterra M (1988) On performances of nucleate boiling enhanced surfaces for cooling of high-power electronic devices. In: Proceedings of the 22nd international symposium heat transfer in electronic and microelectronic equipment, pp 589–600Google Scholar
  55. Haider SI, Webb RL (1997) A transient micro-convection model of nucleate pool boiling. Int J Heat Mass Transf 40(15):3675–3688CrossRefGoogle Scholar
  56. Hanlon MA, Ma HB (2003) Evaporation heat transfer in sintered porous media. J Heat Transf 125(4):644–652CrossRefGoogle Scholar
  57. Hasegawa S, Echigo R, Irie S (1975) Boiling characteristics and burnout phenomena on heating surface covered with woven screens. J Nucl Sci Technol 12(11):722–724CrossRefGoogle Scholar
  58. Hausner HH, Mal MK (1982) Handbook of powder metallurgy. Chemical Pub. Co., New YorkGoogle Scholar
  59. Hegde RN, Rao SS, Reddy RP (2012) Experimental studies on CHF enhancement in pool boiling with CuO-water nanofluid. Heat Mass Transf 48(6):1031–1041CrossRefGoogle Scholar
  60. Hsieh SS, Weng CJ (1997) Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c. Int J Heat Mass Transf 40(3):519–532CrossRefGoogle Scholar
  61. Hsieh SS, Yang TY (2001) Nucleate pool boiling from coated and spirally wrapped tubes in saturated R-134a and R-600a at low and moderate heat flux. J Heat Transf 123(2):257–270CrossRefGoogle Scholar
  62. Hsu YY (1962) On the size range of active nucleation cavities on a heating surface. J Heat Transf 84(3):207–213CrossRefGoogle Scholar
  63. Hu HP, Yeh RH (2010) Effects of interfacial shear in forced convection turbulent film boiling on a sphere with upward external flowing liquid. J Enhanc Heat Transf 17(2):125CrossRefGoogle Scholar
  64. Hübner P, Künstler W (1997) Pool boiling heat transfer at finned tubes: influence of surface roughness and shape of the fins. Int J Refrig 20(8):575–582CrossRefGoogle Scholar
  65. Hummel RL, inventor; Dept of Chemical Engineering, assignee (1965) Means for increasing the heat transfer coefficient between a wall and boiling liquid. United States Patent US 3,207,209Google Scholar
  66. Imadojemu HE, Hong KT, Webb RL (1995) Pool boiling of R-11 refrigerant and water on oxidized enhanced tubes. J Enhanc Heat Transf 2(3):189CrossRefGoogle Scholar
  67. Jamialahmadi M, Müller-Steinhagen H (1993) Scale formation during nucleate boiling—a review. Corros Rev 11(1–2):25–54Google Scholar
  68. Janowski KR, Shum MS, Bradley SA, inventors; UOP LLC, assignee (1978) Heat transfer surface. United States Patent US 4,129,181Google Scholar
  69. Jiang YY, Wang WC, Wang D, Wang BX (2001) Boiling heat transfer on machined porous surfaces with structural optimization. Int J Heat Mass Transf 44(2):443–456zbMATHCrossRefGoogle Scholar
  70. Jung JY, Kim ES, Kang YT (2012) Stabilizer effect on CHF and boiling heat transfer coefficient of alumina/water nanofluids. Int J Heat Mass Transf 55(7–8):1941–1946CrossRefGoogle Scholar
  71. Jung JY, Kim ES, Nam Y, Kang YT (2013) The study on the critical heat flux and pool boiling heat transfer coefficient of binary nanofluids (H2O/LiBr Al2O3). Int J Refrig 36(3):1056–1061CrossRefGoogle Scholar
  72. Kajikawa T, Takazawa H, Mizuki M (1983) Heat transfer performance of metal fiber sintered surfaces. Heat Transfer Eng. 4(1):57–66CrossRefGoogle Scholar
  73. Kandlikar SG (2001) A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J Heat Transf 123(6):1071–1079CrossRefGoogle Scholar
  74. Kang MG (2000) Effect of surface roughness on pool boiling heat transfer. Int J Heat Mass Transf 43(22):4073–4085zbMATHCrossRefGoogle Scholar
  75. Kartsounes GT (1975) A study of surface treatment on pool boiling heat transfer in refrigerant-12. ASHRAE Trans 81(Pt. 1):320–326Google Scholar
  76. Kedzierski MA (1995) Calorimetric and visual measurements of R123 pool boiling on four enhanced surfaces, Report # NISTIR 5732, US Department of EnergyGoogle Scholar
  77. Khrustalev D, Faghri A (1994) Thermal analysis of a micro heat pipe. J Heat Transf 116(1):189–198CrossRefGoogle Scholar
  78. Kim CJ, Bergles AE (1988) Incipient boiling behaviour of porous boiling surfaces used for cooling of microelectronic chips. Particul Phenom Multiphase Transport 2:3–18Google Scholar
  79. Kim NH (1996) Pool boiling heat transfer enhancement by perforated plates. American Society of Mechanical Engineers, New York, NYGoogle Scholar
  80. Kim NH, Choi KK (2001) Nucleate pool boiling on structured enhanced tubes having pores with connecting gaps. Int J Heat Mass Transf 44(1):17–28CrossRefGoogle Scholar
  81. Ko SY, Liu L, Yao YQ (1992) Boiling hysteresis on porous metallic coatings. In: Chen XJ, Veziroglu TN, Tien CL (eds) Multiphase flow and heat transfer: second international symposium. Hemisphere, New York, pp 259–268Google Scholar
  82. Kole M, Dey TK (2012) Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids. Appl Therm Eng 37:112–119CrossRefGoogle Scholar
  83. Komendantov AS, Yang Y, Kuang B, Bolshakov RN (2004) Heat transfer enhancement at boiling crisis in straight and spiral tubes. J Enhanc Heat Transf 11(4)Google Scholar
  84. Kovalev SA, Solovyev S, Ovodkov O (1999) Theory of boiling heat transfer on a capillary porous surface. In: Proceeding of the 9th international heat transfer conference, vol. 2, pp 105–110Google Scholar
  85. Krikkis RN, Sotirchos SV, Razelos P (2003) Multiplicity analysis of pin fins under multiboiling conditions. J Enhanc Heat Transf 10(1):95CrossRefGoogle Scholar
  86. Kulenovic R, Mertz R, Groll M (2002) High speed flow visualization of pool boiling from structured tubular heat transfer surfaces. Exp Thermal Fluid Sci 25(7):547–555CrossRefGoogle Scholar
  87. Kun LC, Czikk AM (1969) Surface for boiling liquids. U.S. Patent 3,454,081 (Reissued August 21, 1979 Re. 30,077)Google Scholar
  88. Kurihara HM, Myers JE (1960) The effects of superheat and surface roughness on boiling coefficients. AICHE J 6(1):83–91CrossRefGoogle Scholar
  89. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf 53(5–6):972–981CrossRefGoogle Scholar
  90. Li Z, Tan Y, Wang S (1992) Investigation of the heat transfer performance of mechanically made porous surface tubes with ribbed tunnels. In: Chen XJ, Veziroglu TN, Tien CL (eds) Multiphase flow and heat transfer; second international symposium, vol 1. Hemisphere, New York, pp 700–707Google Scholar
  91. Liang HS, Yang WJ (1998) Nucleate pool boiling heat transfer in a highly wetting liquid on micro-graphite-fiber composite surfaces. Int J Heat Mass Transf 41(13):1993–2001CrossRefGoogle Scholar
  92. Liaw SP, Dhir VK (1986) Effect of surface wettability on transition boiling heat transfer from a vertical surface. In: Proceedings of the 8th international heat transfer conference, vol 4, pp 2031–2036Google Scholar
  93. Lienhard JH (1987) A heat transfer textbook, 2nd edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  94. Liu JW, Lee DJ, Su A (2001) Boiling of methanol and HFE-7100 on heated surface covered with a layer of mesh. Int J Heat Mass Transf 44(1):241–246CrossRefGoogle Scholar
  95. Liu X, Ma T, Wu J (1987) Effects of porous layer thickness of sintered screen surfaces on pool nucleate boiling heat transfer and hysteresis phenomena. In: Wang B-X (ed) Heat transfer science and technology. Hemisphere, New York, pp 577–583Google Scholar
  96. Liu ZH, Xiong JG, Bao R (2007) Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiphase Flow 33(12):1284–1295CrossRefGoogle Scholar
  97. Lorenz JJ, Mikic BB, Rohsenow WM, (1974) The effect of surface conditions on nucleate boiling characteristics. In: Proc 5th Int Heat Transfer Conf, vol 4, pp 35–49Google Scholar
  98. Luke A (1997) Pool boiling heat transfer from horizontal tubes with different surface roughness. Int J Refrig 20(8):561–574CrossRefGoogle Scholar
  99. Ma HB, Peterson GP (1997) Temperature variation and heat transfer in triangular grooves with an evaporating film. J Thermophys Heat Transfer 11(1):90–97CrossRefGoogle Scholar
  100. Ma T, Liu X, Wu J, Li H, (1986) Effects of geometrical shapes and parameters of re-entrant grooves on nucleate pool boiling heat transfer from porous surfaces. In: Heat Transfer 1986, Proc 8th Int Heat Transfer Conf, vol 4, pp 2013–2018Google Scholar
  101. Malyshenko SP, Styrikovich MA (1992) Heat transfer at pool boiling on surfaces with porous coating. In: Chen XJ, Veziroglu TN, Tien CL (eds) Multiphase flow and heat transfer: second international symposium, vol 1. Hemisphere, New York, pp 269–284Google Scholar
  102. Marto PJ, Moulson JA, Maynard MD (1968) Nucleate pool boiling of nitrogen with different surface conditions. J Heat Transf 90(4):437–444CrossRefGoogle Scholar
  103. Matijević M, Djurić M, Zavargo Z, Novaković M (1992) Improving heat transfer with pool boiling by covering of heating surface with metallic spheres. Heat Transf Eng 13(3):49–57CrossRefGoogle Scholar
  104. Mertz R, Kulenovic R, Chen Y, Groll M (2002) Pool boiling of butane from enhanced evaporator tubes. Heat Transf 3:629–634Google Scholar
  105. Mikic BB, Rohsenow WM (1969) A new correlation of pool-boiling data including the effect of heating surface characteristics. J Heat Transf 91(2):245–250CrossRefGoogle Scholar
  106. Milton RM, inventor; Union Carbide Corp, assignee (1968) Heat exchange system. United States Patent US 3,384,154Google Scholar
  107. Milton RM, inventor; Union Carbide Corp, assignee (1970) Heat exchange system. United States Patent US 3,523,577Google Scholar
  108. Milton RM, inventor; Union Carbide Corp, assignee (1971) Heat exchange system with porous boiling layer. United States Patent US 3,587,730Google Scholar
  109. Min J, Webb RL, Bemisderfer CH (2000) Long-term hydraulic performance of dehumidifying heat-exchangers with and without hydrophilic coatings. HVAC&R Res 6(3):257–272CrossRefGoogle Scholar
  110. Modahl RJ, Luckeroth VC, inventors; Trane Co, assignee (1982) Heat transfer surface for efficient boiling of liquid R-11 and its equivalents. United States Patent US 4,354,550Google Scholar
  111. Nakayama W, Daikoku T, Kuwahara H, Nakajima T (1980a) Dynamic model of enhanced boiling heat transfer on porous surfaces. Prut I: experimental investigation. J Heat Transf 102:445–450CrossRefGoogle Scholar
  112. Nakayama W, Daikoku T, Kuwahara H, Nakajima T (1980b) Dynamic model of enhanced boiling heat transfer on porous surfaces Prut II: analytical modelling. Heat Transf 102:451–456CrossRefGoogle Scholar
  113. Nakayama W, Daikoku T, Nakajima T (1982) Effects of pore diameters and system pressure on saturated pool nucleate boiling heat transfer from porous surfaces. J Heat Transf 104(2):286–291CrossRefGoogle Scholar
  114. Nishikawa K (1983) Augmented heat transfer by nucleate boiling at prepared surfaces. Proc ASME/JSME Thermal Eng Conf (1):387–393Google Scholar
  115. Nishikawa K, Ito T (1980) Augmentation of nucleate boiling heat transfer by prepared surfaces. In: Heat transfer in energy problems, pp 111–118Google Scholar
  116. O’Connor JP, You SM (1995) A painting technique to enhance pool boiling heat transfer in saturated FC-72. J Heat Transf 117(2):387–393CrossRefGoogle Scholar
  117. O’Neill PS, Gottzmann CF, Terbot JW (1972) Novel heat exchanger increases cascade cycle efficiency for natural gas liquefaction. In: Advances in cryogenic engineering. Springer, Boston, MA, pp 420–437Google Scholar
  118. Ökten K, Biyikoglu A (2018) Effect of air bubble injection on the overall heat transfer coefficient. J Enhanc Heat Transf 25(3):195CrossRefGoogle Scholar
  119. Orman L (2016) Enhancement of pool boiling heat transfer with pin− fin microstructures. J Enhanc Heat Transf 23(2):137CrossRefGoogle Scholar
  120. Pais C, Webb RL (1991) Literature survey of pool boiling on enhanced surfaces. ASHRAE Trans 97(1):79–89Google Scholar
  121. Palm B (1992) Heat transfer enhancement in boiling by aid of perforated metal foils. In: Sunden B, Zukauskas A (eds) Recent advances in heat transfer. Elsevier Science, New YorkGoogle Scholar
  122. Park KA, Bergles AE (1988) Effects of size of simulated microelectronic chips on boiling and critical heat flux. J Heat Transf 110(3):728–734CrossRefGoogle Scholar
  123. Peterson GP (1994) An introduction to heat pipes. Wiley Interscience, New YorkGoogle Scholar
  124. Polezhaev YV (1990) Modelling heat transfer with boiling on porous structures. Therm Eng 37(12):617–620Google Scholar
  125. Ragi EG, inventor; Union Carbide Corp, assignee (1972) Composite structure for boiling liquids and its formation. United States Patent US 3,684,007Google Scholar
  126. Rainey KN, You SM (2001) Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces. Int J Heat Mass Transf 44(14):2589–2599CrossRefGoogle Scholar
  127. Ramaswamy C, Joshi Y, Nakayama W, Johnson WB (2003) Semi-analytical model for boiling from enhanced structures. Int J Heat Mass Transf 46(22):4257–4269CrossRefGoogle Scholar
  128. Rohsenow WM (1985) Boiling, in handbook of heat transfer fundamentals. McGraw Hill, New York, pp 12–15Google Scholar
  129. Sachar KS, Silvestri VJ, inventors; International Business Machines Corp, assignee (1983) Porous film heat transfer. United States Patent US 4,381,818Google Scholar
  130. Saidi MH, Ohadi M, Souhar M (1999) Enhanced pool boiling of R-123 refrigerant on two selected tubes. Appl Therm Eng 19(8):885–895CrossRefGoogle Scholar
  131. Saier M, Kastner HW, Klockler R, inventors; Wieland-Werke AG, assignee (1979) Y and T-finned tubes and methods and apparatus for their making. United States Patent US 4,179,911Google Scholar
  132. Sanborn DF, Holman JL, Ware CD, inventors; Trane Co, assignee (1982) Heat exchange surface with porous coating and subsurface cavities. United States Patent US 4,359,086Google Scholar
  133. Sathyabhama A (2015) Nucleate pool boiling heat transfer from a flat-plate grooved surface. J Enhanc Heat Transf 22(3)Google Scholar
  134. Sathyabhama A, Pandiyan PS (2016) Effect of surface vibration on boiling heat transfer from a copper flat circular disc. J Enhanc Heat Transf 23(4)CrossRefGoogle Scholar
  135. Shahmoradi Z, Etesami N, Esfahany MN (2013) Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun Heat Mass Transf 47:113–120CrossRefGoogle Scholar
  136. Shum MS, inventor; UOP LLC, assignee (1980) Finned heat transfer tube with porous boiling surface and method for producing same. United States Patent US 4,182,412Google Scholar
  137. Sokol P, Blein P, Gorenflo D, Rott W, Schömann H (1990) Pool boiling heat transfer from plain and finned tubes to propane and propylene. Heat Transf:75–80Google Scholar
  138. Sridharan A, Hochreiter LE, Cheung FB, Webb RL (2002) Effect of chemical cleaning on steam generator tube performance. Heat Transf Eng 23(1):38–47CrossRefGoogle Scholar
  139. Srinivasan V, Augustyniak JD, Lockett MJ (2001) Pool boiling experiments with liquid nitrogen on enhanced boiling surfaces. In: Compact heat exchangers and enhancement technology for the process industries-2001: Proceedings of the third international conference on compact heat exchangers and enhancement technology for the process industries held at the Davos Congress Centre, Davos, Switzerland. Begell House Publishers Inc., p 409Google Scholar
  140. Suriyawong A, Wongwises S (2010) Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp Thermal Fluid Sci 34(8):992–999CrossRefGoogle Scholar
  141. Szumigala ET (1971) Manufacturing method for boiling surfaces. US Patent 3,566,514Google Scholar
  142. Tarrad AH, Burnside BM (1993) Pool boiling tests on plain and enhanced tubes using a wide-boiling-range mixture. Exp Heat Transf Int J 6(1):83–96CrossRefGoogle Scholar
  143. Tatara RA, Payvar P (2000) Pool boiling of pure R134a from a single Turbo-BII-HP tube. Int J Heat Mass Transf 43(12):2233–2236CrossRefGoogle Scholar
  144. Thors P, Clevinger NR, Campbell BJ, Tyler JT, inventors; Wolverine Tube Inc., assignee (1997) Heat transfer tubes and methods of fabrication thereof. United States Patent US 5,697,430Google Scholar
  145. Torii T, Hirasawa S, Kuwahara H, Yanagida T, Fujie K (1978) The use of heat exchangers with THERMOEXCEL’s tubing in ocean thermal energy power plants. ASMEGoogle Scholar
  146. Tsay JY, Yan YY, Lin TF (1996) Enhancement of pool boiling heat transfer in a horizontal water layer through surface roughness and screen coverage [Erhöhung des Wärmeübergangs beim Behältersieden in einer horizontalen Wasserschicht durch Aufrauhen und/oder Abdecken der Heizfläche mittels eines Edelstahlnetzes]. Heat Mass Transf 32(1–2):17–26CrossRefGoogle Scholar
  147. Uhle JL (1998) Boiling heat transfer characteristics of steam generator U-tube fouling. Doctoral dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  148. Uma BBK, Rao M, Balikrishnan AR (2000) Enhanced pool boililng heat transfer using interference plates. In: Proceedings of the NHTC ‘00, 34th national heat transfer conference, pp 911–929Google Scholar
  149. Vachon RI, Nix GH, Tanger GE, Cobb RO (1969) Pool boiling heat transfer from Teflon-coated stainless steel. J Heat Transf 91(3):364–369CrossRefGoogle Scholar
  150. Vasiliev LL, Zhuravlyov AS, Shapovalov A (2012) Heat transfer enhancement in mini channels with micro/nano particles deposited on a heat-loaded wall. J Enhanc Heat Transf 19(1):13CrossRefGoogle Scholar
  151. Vazquez DM, Kumar R (2013) Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling. Int Commun Heat Mass Transf 41:1–9CrossRefGoogle Scholar
  152. Wang CC, Chang YJ, Shieh WY, Yang CY (1998) Nucleate boiling performance of R-22, R-123, R-134A, R-410A, and R-407C on smooth and enhanced tubes. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GAGoogle Scholar
  153. Wang DY, Cheng JG, Zhang HJ (1991) Pool boiling heat transfer from T-finned tubes at atmospheric and super-atmospheric pressures. In: ASME HDT, p 159Google Scholar
  154. Wang J, Catton I (2001) Enhanced evaporation heat transfer in triangular grooves covered with a thin fine porous layer. Appl Therm Eng 21(17):1721–1737CrossRefGoogle Scholar
  155. Wasekar VM, Manglik RM (2017) Enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanc Heat Transf 24(1–6):47CrossRefGoogle Scholar
  156. Webb RL (1981) The evolution of enhanced surface geometries for nucleate boiling. Heat Transf Eng 2(3–4):46–69CrossRefGoogle Scholar
  157. Webb RL (1983) Nucleate boiling on porous coated surfaces. Heat Transf Eng 4(3–4):71–82CrossRefGoogle Scholar
  158. Webb RL, Donald Q (2004) Kern lecture award paper: odyssey of the enhanced boiling surface. J Heat Transf 126(6):1051–1059CrossRefGoogle Scholar
  159. Webb RL, Haider I (1992) An analytical model for nucleate boiling on enhanced surfaces. In: Dhir VK, Bergles AE (eds) Proceedings of the engineering foundation conference on pool and external flow boiling, Santa Barbara, CA, pp 345–360Google Scholar
  160. Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New YorkGoogle Scholar
  161. Webb RL, inventor; Trane Co, assignee (1970) Heat transfer surface which promotes nucleate ebullition. United States Patent US 3,521,708Google Scholar
  162. Webb RL, inventor; Trane Co, assignee (1972) Heat transfer surface having a high boiling heat transfer coefficient. United States Patent US 3,696,861Google Scholar
  163. Webb RL, Pais C (1992) Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int J Heat Mass Transf 35(8):1893–1904CrossRefGoogle Scholar
  164. Wei L, Yuan D, Feng Y, Tang D (2014) Experimental study of bubble growth and flow in small-diameter thermosyphon loops with filling ratios of 90% and 95%. J Enhanc Heat Transf 21(1):63CrossRefGoogle Scholar
  165. Wen D, Corr M, Hu X, Lin G (2011) Boiling heat transfer of nanofluids: the effect of heating surface modification. Int J Therm Sci 50(4):480–485CrossRefGoogle Scholar
  166. Xin MD (1985) Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. In: AICHE paper 23rd national heat transfer conference, Denver, COGoogle Scholar
  167. Xin MD, Chao YD (1987) Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. Chem Eng Commun 50(1–6):185–199CrossRefGoogle Scholar
  168. Xu J, Chen B, Wang X (2010) Prediction of sliding bubble velocity and mechanism of sliding bubble motion along the surface. J Enhanc Heat Transf 17(2):111CrossRefGoogle Scholar
  169. Yang GW, Liang HS, Yang WJ, Vrable DL (1996) Nucleate pool boiling on micro graphite–copper composite surfaces. J Heat Transf 118(3):792–796CrossRefGoogle Scholar
  170. Yilmaz S, Westwater JW (1981) Effect of commercial enhanced surfaces on the boiling heat transfer curve. Adv EnhancHeat Transf 18:73–91Google Scholar
  171. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83(16):3374–3376CrossRefGoogle Scholar
  172. Young RX, Hummel RL (1965) Improved nucleate boiling heat transfer. Chem Eng Prog Symp Ser 61(59):264–470Google Scholar
  173. Zhang H, Dong L (1992) Analysis and experiment of pool boiling heat transfer from Cit-shaped finned tube above atmospheric pressure. In: Chen XJ, Veziroglu TN, Tien CL (eds) Multiphase flow and heat transfer. Second international symposium, vol I. Hemisphere, New York, pp 384–392Google Scholar
  174. Zhang Y, Zhang H, Chen XJ, Verioglu TN, Tien CL (1992) Boiling heat transfer from a thin powder porous layer at low and moderate heat flux. In: II international symposium on multiphase flow heat transfer, New York. Hemisphere, Washington, DC, pp 358–366Google Scholar
  175. Zhou X, Bier K (1997) Pool boiling heat transfer from a horizontal tube coated with oxide ceramics. Int J Refrig 20(8):552–560CrossRefGoogle Scholar
  176. Zohler SR, inventor; Carrier Corp, assignee (1990) Porous coating for enhanced tubes. United States Patent US 4,890,669Google Scholar
  177. Zuber N (1958) On the stability of boiling heat transfer. Trans Am Soc Mech Eng 80Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering, Science and Technology, ShibpurHowrahIndia

Personalised recommendations