Development of Emergency Strategies for Cable-Driven Parallel Robots after a Cable Break

  • Roland BoumannEmail author
  • Tobias Bruckmann
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 74)


This paper investigates cable breaks of a cable-driven parallel robot and proposes emergency strategies to recover the payload. A simulation model of a simplified two dimensional robot is set up and the workspace of the robot is analyzed before and after a cable break. Two methods are proposed for dealing with the issue of guiding the end effector into the remaining workspace and to stop the system: An approach to minimize the kinetic energy of the system is made as well as the use of potential fields in combination with a method for calculating reasonable cable force distributions outside of the wrench feasible workspace. Both methods are tested in simulation and the results are presented.


cable-driven parallel robot cable break cable failure force distribution emergency strategies model prediction potential fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research received funding from the EFRE.NRW (2014-2020) Joint Research Funding Programme of the European Union (EFRE) and the Ministry of Economy, Energy, Industry, and Handicrafts of the German Federal State of North Rhine-Westphalia (NRW) under grant agreement EFRE-0800365 (ML-1-1-019B, LEAN).


  1. 1.
    Izard, J.B., Dubor, A., Herve, P.E., Cabay, E., Culla, D., Rodriguez, M., Barrado, M.: Large-scale 3D printing with cable-driven parallel robots. Construction Robotics 1, pp. 69-76 (2017)CrossRefGoogle Scholar
  2. 2.
    Bruckmann, T., Lalo, W., Sturm, C.: Application Examples of Wire Robots. In: Multibody System Dynamics, Robotics and Control. Springer, Vienna (2013)Google Scholar
  3. 3.
    Berti, A., Gouttefarde, M., Carricato M.: Dynamic recovery of cable-suspended parallel robots after a cable failure. In: Lennarĉiĉ J., Merlet JP.(eds) Advances in Robot Kinematics. Springer, Cham (2016)Google Scholar
  4. 4.
    Passarini, C., Zanotto, D., Boschetti, G.: Dynamic trajectory planning for failure recovery in cable-suspended camera systems. J. Mechanisms and Robotics 11(2), (2018)CrossRefGoogle Scholar
  5. 5.
    Hiller, M.: Mechanische Systeme: Eine Einführung in die analytische Mechanik und Systemdynamik. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  6. 6.
    Bruckmann, T., Pott, A., Hiller, M.: Calculating force distributions for redundantly actuated tendon-based Stewart platforms. In: Lennarĉiĉ J., Roth B.(eds) Advances in Robot Kinematics. Springer, Dordrecht (2006)Google Scholar
  7. 7.
    Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: IEEE International Conference on Robotics and Automation, pp. 3869-3874. Pasadena, CA (2008)Google Scholar
  8. 8.
    Côté, A.F., Cardou, P., Gosselin, C.: A tension distribution algorithm for cabledriven parallel robots operating beyond their wrench-feasible workspace. In: 16th International Conference on Control, Automation and Systems (ICCAS), pp. 68-73. Gyeongju (2016)Google Scholar
  9. 9.
    Pott, A.: Cable-driven Parallel Robots: Theory and Application. Springer Tracts in Advanced Robotics, (2018). - ISBN 978-3-319-76137-4Google Scholar
  10. 10.
    Grüne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Springer, London (2011). { ISBN 9780857295019CrossRefGoogle Scholar
  11. 11.
    Vivas, A., Poignet, P.: Predictive functional control of a parallel robot. In: Control Engineering Practice 13(7), pp. 863-874 (2005)CrossRefGoogle Scholar
  12. 12.
    Zi, B., Lin, J., Qian, S.: Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes. In: Robotics and Computer-Integrated Manufacturing 34, pp. 105-123 (2015)CrossRefGoogle Scholar
  13. 13.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, (2005). { ISBN 9780471649908Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Duisburg-EssenDuisburgGermany

Personalised recommendations