Advertisement

Path Planning of a Mobile Cable-Driven Parallel Robot in a Constrained Environment

  • Tahir Rasheed
  • Philip Long
  • David Marquez-Gamez
  • Stèphane CaroEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 74)

Abstract

A Mobile Cable-Driven Parallel Robot (MCDPR) is a special type of Reconfigurable Cable-Driven Parallel Robot (RCDPR) composed of a classical Cable-Driven Parallel Robot (CDPR) mounted on multiple mobile bases. The additional mobility of the mobile bases allows such systems to autonomously modify their geometric architecture, and thus make them suitable for multiple manipulative tasks in constrained environments. Moreover, these additional mobilities make MCDPRs kinematically redundant. Therefore, the subject of this paper is to introduce a two stage path planning algorithm for MCDPRs. The first stage searches for a feasible and collision free path of mobile bases. The second stage deals with generating an optimal path of the moving-platform to displace it from an initial to a desired pose. The proposed algorithm is validated through simulation on a three degree-of-freedom (DoF) point mass moving-platform displaced by four cables with each cable carried by an independent mobile base.

Keywords

Mobile Cable-Driven Parallel Robot Reconfigurability Kinematic Redundancy Path Planning Wrench Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Albus, R. Bostelman, and N. Dagalakis. “The nist spider, a robot crane”. Journal of research of the National Institute of Standards and Technology, 97(3):373–385, 1992.CrossRefGoogle Scholar
  2. 2.
    S. Kawamura, H. Kino, and C. Won. “High-speed manipulation by using parallel wire-driven robots”. Robotica, 18(1):13–21, 2000.CrossRefGoogle Scholar
  3. 3.
    Lambert, C., Nahon, M., and Chalmers, D., 2007. “Implementation of an aerostat positioning system with cable control”. IEEE/ASME Transactions on Mechatronics, 12(1), pp. 32-40.CrossRefGoogle Scholar
  4. 4.
    P. Gallina, G. Rosati, and A. Rossi. “3-dof wire driven planar haptic interface”. In Journal of Intelligent and Robotic Systems, 32(1):23–36, 2001.CrossRefGoogle Scholar
  5. 5.
    Rasheed, T., Long, P.,Marquez-Gamez, D. and Caro, S., “Tension Distribution Algorithm for Planar Mobile Cable-Driven Parallel Robots”, The Third International Conference on Cable-Driven Parallel Robots (CableCon 2017), Quebec City, Canada, August 24 2017.Google Scholar
  6. 6.
    Rasheed, T., Long, P., Gamez, D. M., and Caro, S. “Available wrench set for planar mobile cable-driven parallel robots”. In 2018 IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  7. 7.
    Rasheed, T., Long, P., Marquez-Gamez, D. and Caro, S., 2018, August.“Optimal Kinematic Redundancy Planning for PlanarMobile Cable-Driven Parallel Robots”. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V05BT07A025-V05BT07A025). American Society of Mechanical Engineers.Google Scholar
  8. 8.
    Rasheed, T., Long, P., Gamez, D. M., and Caro, S.: “Kinematic modeling and twist feasibility of mobile cable-driven parallel robots”. In Advances in Robot Kinematics 2018.Google Scholar
  9. 9.
    Hiller, M., Fang, S., Mielczarek, S., Verhoeven, R., and Franitza, D. “Design, analysis and realization of tendonbased parallel manipulators”. In Mechanism and Machine Theory, 40(4), pp. 429–445, 2005.CrossRefGoogle Scholar
  10. 10.
    L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin. “A reconfiguration strategy for reconfigurable cable-driven parallel robots”. In IEEE International Conference on Robotics and Automation (ICRA), pages 1613–1620, IEEE, 2015.Google Scholar
  11. 11.
    L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin. “Discrete reconfiguration planning for cable-driven parallel robots”. In Mechanism and Machine Theory, pages 313-337, 2016.CrossRefGoogle Scholar
  12. 12.
    G. Rosati, D. Zanotto, and S. K. Agrawal. “On the design of adaptive cable-driven systems”. In Journal of mechanisms and robotics, 3(2):021004, 2011.CrossRefGoogle Scholar
  13. 13.
    Pottmann, H., Leopoldseder, S. and Hofer, M., 2002. “Approximation with active B-spline curves and surfaces”. In Computer Graphics and Applications, 2002. Proceedings. 10th Pacific Conference on (pp. 8-25). IEEE.Google Scholar
  14. 14.
    https://www.mathworks.com/matlabcentral/fileexchange/27374-b-splinesGoogle Scholar
  15. 15.
    Guay, F., Cardou, P., Cruz-Ruiz, A.L. and Caro, S., 2014. “Measuring how well a structure supports varying external wrenches”. In New Advances in Mechanisms, Transmissions and Applications (pp. 385-392). Springer, DordrechtCrossRefGoogle Scholar
  16. 16.
    Ruiz, A.L.C., Caro, S., Cardou, P. and Guay, F., 2015. Arachnis: “Analysis of robots actuated by cables with handy and neat interface software”. In Cable-Driven Parallel Robots (pp. 293-305). Springer International Publishing.Google Scholar
  17. 17.
    Barraquand, J. and Latombe, J.C., “On nonholonomic mobile robots and optimal maneuvering”. In Proceedings. IEEE International Symposium on Intelligent Control, pp. 340-347, September 1989, IEEE.Google Scholar
  18. 18.
    Connors, J. and Elkaim, G., “Analysis of a spline based, obstacle avoiding path planning algorithm”. In Vehicular Technology Conference, VTC 2007-Spring, pp. 2565-2569, April 2007, IEEE.Google Scholar
  19. 19.
    Y.Wischnitzer, N. Shvalb, andM. Shoham, “Wire-driven parallel robot: Permitting collisions between wires,” Int. J. Rob. Res., vol. 27, no. 9, pp. 1007–1026, Sep. 2008Google Scholar
  20. 20.
    S. M. LaValle, IPlanning algorithms. Cambridge university press, 2006.Google Scholar
  21. 21.
    S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tahir Rasheed
    • 1
  • Philip Long
    • 2
  • David Marquez-Gamez
    • 3
  • Stèphane Caro
    • 4
    Email author
  1. 1.Ècole Centrale de Nantes, Laboratoire des Sciences du Numèrique de NantesNantesFrance
  2. 2.RIVeR Lab, Department of Electrical and Computing EngineeringNortheastern UniversityBostonUSA
  3. 3.IRT Jules VerneBouguenaisFrance
  4. 4.CNRS, Laboratoire des Sciences du Numèrique de NantesNantesFrance

Personalised recommendations