Advertisement

Chain Driven Robots: An Industrial Application Opportunity. A Planar Case Approach

  • Guillermo Rubio-Gómez
  • David Rodríguez-Rosa
  • Jorge A. García-Vanegas
  • Antonio Gonzalez-Rodríguez
  • Fernando J. Castillo-García
  • Erika OttavianoEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 74)

Abstract

This work presents Chain-Driven Parallel Robots replacing cables by chains. The use of conventional sprockets adds some important advantages with regards to Cable-Driven Parallel Robots. The most important ones are: a) no drum is required; b) no cable plasticity limitation must be imposed; c) using counterweights the manipulator can move the required payload with low motorization. In this paper some design considerations for allowing an accurate positioning and maximizing the robot workspace are presented. As example, a 2 Degrees-of-Freedom planar manipulator has been designed and built. The robot can command a 60 kg payload into a 0.8 m × 1.8 m workspace using only two 150W DC motor.

Keywords

Chain-Driven Robot Parallel Robot Industrial Applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by EU Call RFCS-2017 through the research project DESDEMONA (grant agreement number 800687).

References

  1. 1.
    Castelli, G., Ottaviano, E., Gonzalez, A.: Analysis and simulation of a new Cartesian cable-suspended robot. Proc. IMechE Part C: J. Mechanical Engineering Science 224: 1717–1726 (2010).  https://doi.org/10.1243/09544062jmes1976.Google Scholar
  2. 2.
    Gonzalez-Rodriguez, A., Castillo-Garcia, F.J., Ottaviano, E., Rea, P., Gonzalez-Rodriguez, A.G.: On the effects of the design of cable-Driven robots on kinematics and dynamics models accuracy. Mechatronics 43: 18–27 (2017).  https://doi.org/10.1016/j.mechatronics.2017.02.002.CrossRefGoogle Scholar
  3. 3.
    Albus, J., Bostelman, Dagalakis N.: The nist robocrane. Journal of Robotic Systems 10 (5), 709–724 (1993).CrossRefGoogle Scholar
  4. 4.
    Castelli, G., Ottaviano, E., Rea, P.: A Cartesian Cable-Suspended Robot for improving end-users’ mobility in an urban environment. Robotics and Computer-Integrated Manufacturing 30(3): 335–343 (2014).  https://doi.org/10.1016/j.rcim.2013.11.001.CrossRefGoogle Scholar
  5. 5.
    Havlik, S.: A cable-suspended robotic manipulator for large workspace operations. Comput. Aided Civil Infrastruct. Eng. 15(6): 56–68 (2000).Google Scholar
  6. 6.
    Nan, R., Peng, B.: A Chinese concept for 1km radio telescope. Acta Astronautica 46 (10–12): 667–675 (2000).CrossRefGoogle Scholar
  7. 7.
    Abbasnejad, G., Carricato, M.: Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables. IEEE Transactions on Robotics 31 (2): 468–478 (2015).Google Scholar
  8. 8.
    Du, J., Agrawal, SK.: Dynamic Modeling of Cable-Driven Parallel Manipulators with Distributed Mass Flexible Cables. J. Vib. Acoust. 137(2): 1–8 (2015).  https://doi.org/10.1115/1.4029486.CrossRefGoogle Scholar
  9. 9.
    Bosscher, P., Ebert-Uphoff, I.: Disturbance robustness measures for underconstrained cable-driven robots. Proc. IEEE Int. Conf. Robot. Autom., Orlando, FL: 4205–4212 (2006).Google Scholar
  10. 10.
    Carricato, M., Merlet, J-P.: Stability analysis of underconstrained cable-driven parallel robots. IEEE Trans. on Robotics 29(1):288–296 (2013).CrossRefGoogle Scholar
  11. 11.
    Kozak et al.: Static Analysis of Cable-Driven Manipulators with Non-Negligible Cable Mass. IEEE Transactions on Robotics 22(3):425–433 (2006).  https://doi.org/10.1109/tro.2006.870659.CrossRefGoogle Scholar
  12. 12.
    Merlet, J.-P.: A generic numerical continuation scheme for solving the direct kinematics of cable-driven parallel robot with deformable cables. In IEEE International Conference on Intelligent Robots and Systems: 4337–4343 (2016).Google Scholar
  13. 13.
    Ottaviano, E., Gattulli, V., Potenza, F.: Elasto-Static Model for Point Mass Sagged Cable-Suspended Robots. Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham (2018).Google Scholar
  14. 14.
    Pott, A, Tempel, P.: A Uni_ed Approach to Forward Kinematics for Cable-Driven Parallel Robots Based on Energy. Advances in Robot Kinematics (ARK): 401–409 2018.  https://doi.org/10.1007/978-3-319-93188-3 46.zbMATHGoogle Scholar
  15. 15.
    Merlet, J.-P., Daney, D.: A portable, modular parallel wire crane for rescue operations. IEEE International conference on robotics and automation, Anchorage, Alaska, 3–8 May 2010: 2834–2839 (2010).Google Scholar
  16. 16.
    Collard, J.F., Cardou, P.: Computing the lowest equilibrium pose of a cable-suspended rigid body. Optimization and Engineering 14(3): 457–476 (2013).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Merlet, J.-P., dit Sandretto, A.: The Forward Kinematics of Cable-Driven Parallel Robots with Sagging Cables. In Cable-Driven Parallel Robots: 3–15 (2014) Springer.Google Scholar
  18. 18.
    Pott, A.: An algorithm for real-time forward kinematics of cable-driven parallel robots. In Advances in Robot Kinematics: 529–538 (2010), Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Castilla-La ManchaCastilla-La ManchaSpain
  2. 2.University of IbaguéIbagué, TolimaColombia
  3. 3.University of Cassino and Southern LazioCassinoItaly

Personalised recommendations