Advertisement

Wavy Fin, 3D Corrugated Fin, Perforated Fin, Pin Fin, Wire Mesh, Metal Foam Fin, Packings, Numerical Simulation

  • Sujoy Kumar Saha
  • Hrishiraj Ranjan
  • Madhu Sruthi Emani
  • Anand Kumar Bharti
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The performance of different plate-fins such as wavy fins, corrugated fins, perforated fins, pin-fins, pin-fin arrays, wire meshes, metal foam fins, and packing has been presented in this chapter. The use of plate-fins for cooling heat sinks has also been discussed. The numerical studies on heat transfer enhancement performance of plate-fins have been mentioned.

Keywords

Wavy microchannels Sinusoidal corrugations Pin-fin arrays Metal foam fin 

References

  1. Abdel-Kariem AH, Fletcher LS (1999) Comparative analysis of heat transfer and pressure drop in plate heat exchangers. In: Proc of the 5th ASME/JSME thermal eng conf, San Diego, CA, AJTE99-6291Google Scholar
  2. Abed WM, Whalley RD, Dennis DJ, Poole RJ (2015) Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int J Heat Mass Transfer 88:790–802CrossRefGoogle Scholar
  3. Abou-Madi M (1998) A computer model for mobile air-conditioning system. PhD thesis, University of Brighton, Brighton, UKGoogle Scholar
  4. Achaichia A, Cowell IA (1988) Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Exp Therm Fluid Sci 1:147–157CrossRefGoogle Scholar
  5. Ahmed HE, Mohammed HA, Yusoff MZ (2012) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sust Energ Rev 16:5951–5993CrossRefGoogle Scholar
  6. Aihara T, Maruyama S, Kobayakawa S (1990) Free convective/radiative heat transfer from pin-fin arrays with a vertical base plate (general representation of heat transfer performance). Int J Heat Mass Transfer 33(6):1223–1232CrossRefGoogle Scholar
  7. Ali MM, Ramadhyani S (1992) Experiments on convective heat transfer in corrugated channels. Exp Heat Transfer 5:175–193CrossRefGoogle Scholar
  8. Alkam MK, Al-Nimr MA, Hamdan MO (2001) Enhancing heat transfer in parallel-plate channels by using porous inserts. Int J Heat Mass Transfer 44:931–938zbMATHCrossRefGoogle Scholar
  9. Althaher MA, Abdul-Rassol AA, Ahmed HE, Mohammed HA (2012) Turbulent heat transfer enhancement in a triangular duct using delta-winglet vortex generators. Heat Transfer Asian Res 41:43–62CrossRefGoogle Scholar
  10. Armstrong JE, Winstanley DA (1988, Jan 1) A review of staggered array pin fin heat transfer for turbine cooling applications. J Turbomach 110(1):94–103CrossRefGoogle Scholar
  11. Anashkin OP, Keilin VE, Patrikeev VM (1976) Compact high efficiency perforated-plate heat exchangers(in helium refrigerators). Cryogenics 16:437–439CrossRefGoogle Scholar
  12. Aris MS, McGlen R, Owen I, Sutcliffe CJ (2011) An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng 31:2230–2240CrossRefGoogle Scholar
  13. Asako Y, Faghri M (1987) Finite volume solutions for laminar flow and heat transfer in a corrugated duct. J Heat Transfer 109:627–634CrossRefGoogle Scholar
  14. Atkinson KN, Drakulic R, Heikal MR, Cowell IA (1998) Two and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers. Int J Heat Mass Transfer 41:4063–4080zbMATHCrossRefGoogle Scholar
  15. Aziz A (1975) Periodic heat transfer in annular fins. ASME J Heat Transfer 97:302–303CrossRefGoogle Scholar
  16. Baek S, Lee C, Jeong S (2014) Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger. Cryogenics 60:49–69CrossRefGoogle Scholar
  17. Bhattacharya A, Mahajan R (2000) Finned metal foam heat sinks for electronics cooling in forced convection. In: Proc thirty-fourth national heat transfer conference, Pittsburgh, PAGoogle Scholar
  18. Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743CrossRefGoogle Scholar
  19. Chen CK, Chen CH (1990) Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media. Int J Heat Fluid Flow 11:65–71CrossRefGoogle Scholar
  20. Chen TY, Shu HT (2004) Flow structures and heat transfer characteristics in fan flows with and without delta-wing vortex generators. Exp Therm Fluid Sci 28:273–282CrossRefGoogle Scholar
  21. Chomdee S, Kiatsiriroat T (2006) Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int Commun Heat Mass Transfer 33:618–626CrossRefGoogle Scholar
  22. Choudhury C, Garg HP (1991) Design analysis of corrugated and flat plate solar air heaters. Renew Energy 1:595–607CrossRefGoogle Scholar
  23. Chu HS, Chen CK, Weng CI (1983) Transient response of circular pins. J Heat Transf 105(1):205–208CrossRefGoogle Scholar
  24. Chyu HK, Hsing YC, Natarajan V (1996) Convective heat transfer of cubic fin arrays in a narrow channel. ASME paper No. 96-GT-201Google Scholar
  25. Chyu MK (1990) Heat transfer and pressure drop for short pin-fin arrays with pin endwall. J Heat Transf 112:926–932CrossRefGoogle Scholar
  26. Chyu MK, Goldstein RJ (1991) Influence of an array of wall-mounted cylinders on the mass transfer from a flat surface. Int J Heat Mass Transfer 34(9):2175–2186CrossRefGoogle Scholar
  27. Cicfalo M, Stasiek J, Collins MW (1996) Investigation of flow and heat transfer in corrugated passages II numerical results. Int J Heat Mass Transfer 39:165–192CrossRefGoogle Scholar
  28. Comini G, Nonino C, Savino S (2003) Effect of aspect ratio on convection enhancement in wavy channels. Numer Heat Transfer Part A Appl 44(1):21–37zbMATHCrossRefGoogle Scholar
  29. Cuta J (1998) Forced convection heat transfer in flat plate microchannel heat exchangers. ASHRAE Trans 104:2Google Scholar
  30. Dake T, Majdalani J (2009) Improving flow circulation in heat sinks using quadrupole vortices. In: Proceedings of the ASME. International PACK conference. American Society of Mechanical Engineers, San Francisco, CAGoogle Scholar
  31. DeJong NC, Jacobi AM (2003) Localized flow and heat transfer interactions in louvered fin arrays. Int J Heat Mass Transfer 46:443–445CrossRefGoogle Scholar
  32. Donahoo EE, Camci C, Kulkarni AK, Belegundu AD (2001) Determination of optimal row spacing for a staggered cross-pin array in a turbine blade cooling passage. J Enhanc Heat Transf 8(1):41–53Google Scholar
  33. Ebisu T (1999) Development of new concept air-cooled heat exchanger for energy conservation of air conditioning machine. In: Kakac S et al (eds) Heat transfer enhancement of heat exchangers. Kluwer Academic, Dordrecht, pp 601–620CrossRefGoogle Scholar
  34. Ergin S, Ota M, Yamaguchi H, Sakamoto M (1997) Analysis of periodically fully developed turbulent flow in a corrugated duct using various turbulent models and comparison with experiments. In: JSME centennial grand congress, int conj on fluid eng, Tokyo, Japan, pp 1527–1532Google Scholar
  35. Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26:1820–1829CrossRefGoogle Scholar
  36. Focke WW, Knibbe PG (1986) Flow visualization in parallel plate ducts with corrugated walls. J Fluid Mech 165:73–77CrossRefGoogle Scholar
  37. Focke WW, Zachariades J, Oliver I (1985) The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchanger. Int J Heat Mass Transfer 28:1469–1479CrossRefGoogle Scholar
  38. Fujii M, Seshimo Y, Yarnananaka G (1988) Heat transfer and pressure drop of the perforated surface heat exchanger with passage enlargement and contraction. Int J Heat Mass Transfer 31:135–142CrossRefGoogle Scholar
  39. Fujii M, Seshimo Y, Yoshida T (1991) Heat transfer and pressure drop of tube-fin heat exchanger with trapezoidal perforated fins. In: Lloyd JR, Kurosake Y (eds) Proc 1991 ASME-JSME joint thermal engineering conf, vol 4. ASME, NY, pp 355–360Google Scholar
  40. Gaiser G, Kottke V (1990) Effects of corrugation parameters on local and integral heat transfer in plate heat exchangers and regenerators. In: Heat transfer, vol 5. Hemisphere Publishing Corporation, New York, pp 85–90Google Scholar
  41. Goldstein LJ, Sparrow EM (1977) Heat/mass transfer characteristics for flow in a corrugated wall channel. J Heat Transfer 99:187–195CrossRefGoogle Scholar
  42. Gong L, Kota K, Tao W, Joshi Y (2011) Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J Heat Transfer 133(5):051702CrossRefGoogle Scholar
  43. Gschwind P, Regele A, Kottke V (1995) Sinusoidal wavy channels with Taylor-Gortler vortices. Exp Therm Fluid Sci 11:270–275CrossRefGoogle Scholar
  44. Hamaguchi K, Takahashi S, Miyabe H (1983) Heat transfer characteristics of a regenerator matrix (case of packed wire gauzes). Trans JSME 49B(445):2001–2009CrossRefGoogle Scholar
  45. Heggs PJ, Walton C (1999) Local heat transfer coefficients in corrugated plate heat exchanger channels with mixed inclination angles. In: IMeChE conf trans 6th UK national conf on heat transfer, pp 39–44Google Scholar
  46. Heikal MR, Drakulic R, Cowell TA (1999) Multi-louvered fin surfaces, in recent advances in analysis of heat transfer for fin type surfaces. In: Sunden B, Heggs PJ (eds) Computational mechanics, Billerica, MA, pp 277–293Google Scholar
  47. Hendricks JB, Nilles MJ, Calkins ME (1995) Heat transfer and flow friction in perforated plate heat exchangers. Exp Therm Fluid Sci 10(2):238–247CrossRefGoogle Scholar
  48. Henze M, von Wolfersdorf J (2011) Influence of approach flow conditions on heat transfer behind vortex generators. Int J Heat Mass Transfer 54:279–287zbMATHCrossRefGoogle Scholar
  49. Henze M, von Wolfersdorf J, Weigand B, Dietz CF, Neumann SO (2011) Flow and heat transfer characteristics behind vortex generators – a benchmark dataset. Int J Heat Fluid Flow 32:318–328CrossRefGoogle Scholar
  50. Hessami MA (2002) Thermo-hydraulic performance of cross-corrugated plate heat exchangers. In: Heat transfer, proc 12th int heat transfer conf, vol 4, pp 393–398Google Scholar
  51. Holmes MH (1995) Introduction to perturbation methods. Springer-Verlag, New YorkzbMATHCrossRefGoogle Scholar
  52. Hotani S, Mori K, Maruta T, Suwa A (1977) Performance of a corrugated plate finned coil. Refrig 52:631–640Google Scholar
  53. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013a) Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transfer 56:475–487CrossRefGoogle Scholar
  54. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013b) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transfer 57:58–72CrossRefGoogle Scholar
  55. Hwang JJ, Su RJ, Tsai BJ (2000) Transient analysis of 2-D cylindrical pin fin with constant base heat flux and tip convective effects. J Enhanc Heat Transf 7(3):201–206CrossRefGoogle Scholar
  56. Islamoglu Y, Parmaksizoglu C (2003) The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl Therm Eng 23(8):979–987CrossRefGoogle Scholar
  57. Iwasaki H, Sasaki T, Ishizuka M (1994) Cooling performance of plate fins for multichip modules. In: Intersociety conf on thermal phenomena in electronic systems. IEEE, pp 144–147Google Scholar
  58. Iyengar M, Bar-Cohen A (2002) Least-energy optimization of forced convection plate fin heat sinks. In: Proc the 8th intersociety conf on thermal and thermomechanical phenomena in electronic systems, ITherm 2002, San Diego, CA, pp 792–799Google Scholar
  59. Jang JY, Chen LK (1997) Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. Int J Heat Mass Transf 40(16):3981–3990CrossRefGoogle Scholar
  60. Joardar A, Jacobi AM (2007) A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. J Heat Transfer 129:1156–1167CrossRefGoogle Scholar
  61. Jung J, Hwang G, Baek S, Jeong S, Rowe AM (2012) Partial flow compensation by transverse bypass configuration in multi-channel cryogenic compact heat exchanger. Cryogenics 52:19–26CrossRefGoogle Scholar
  62. Kajino M, Hiramatsu M (1987) Research and development of automotive heat exchangers. In: Yang WJ, Mori Y (eds) Heat transfer in high technology and power engineering. Hemisphere, Washington, DC, pp 420–432Google Scholar
  63. Kawamura K, Nakajima T, Matsushima H (2001) Influence of fan setting height on the cooling performance of a plate-fin-type heat sink with microprocessor. Heat Transfer Asian Res 30(6):512–520CrossRefGoogle Scholar
  64. Kays WM, London AL (1984) Compact hear exchangers, 3rd edn. McGraw-Hill, New YearGoogle Scholar
  65. Kelkar KM, Patankar SV (1987) Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins. J Heat Transfer 109:25–30CrossRefGoogle Scholar
  66. Kelkar KM, Patankar SV (1989) Numerical prediction of heat transfer and fluid flow in rectangular offset fin arrays. Numer Heat Transfer A 15:149–164CrossRefGoogle Scholar
  67. Khoshvaght Aliabadi M, Hormozi F, Hosseini Rad E (2014) New correlations for wavy plate-fin heat exchangers: different working fluids. Int J Numer Meth Heat Fluid Flow 24(5):1086–1108CrossRefGoogle Scholar
  68. Kim N-H, Byun HW (2012) Effect of inlet configuration on distribution of air-water annular flow in a header of a parallel flow heat exchanger. J Enhanc Heat Transf 19(3):271–292CrossRefGoogle Scholar
  69. Kim NH, Kim DY (2010) Two-phase refrigerant distribution in a parallel-flow heat exchanger. J Enhanc Heat Transf 17(1):59–75CrossRefGoogle Scholar
  70. Kim SY, Kuznetsov AV (2003) Optimization of pin-fin heat sinks using anisotropic local thermal nonequilibrium porous model in a jet impinging channel. Numer Heat Transfer Part A Appl 44(8):771–787CrossRefGoogle Scholar
  71. Kim SY, Paek JW, Kang BH (2000) Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. J Heat Transfer 122:572–578CrossRefGoogle Scholar
  72. Kirpikov VA, El’chinov VP (1988) The influence of the equivalent diameter on the effectiveness of plate-fin heat-transfer surfaces. Therm Eng 35(2):89–91Google Scholar
  73. Kirsch KL, Thole KA (2017) Heat transfer and pressure loss measurements in additively manufactured wavy microchannels. J Turbomach 139(1):011007CrossRefGoogle Scholar
  74. Klett J, Ott R, McMillan A (2000) Heat exchangers for heavy vehicles utilizing high thermal conductivity graphite foams. SAE paper 2000-01-2207, Warrendale, PAGoogle Scholar
  75. Kouidry F (1997) Etude des Ecoulements Turbuients Charges de Particules: Application a Lencrassment Pa.rticulaire des Echangeurs a Plagues Corruguees. In: PhD thesis. University Joseph Fourier Grenoble, FranceGoogle Scholar
  76. Kovalenko VO, Mushin LB, Orlov VK, Isfasman GY, Shevyakova SA (1980) Perforated-plate heat exchangers for cryogenic helium units. Chem Petrol Eng 16(7–8):406–407CrossRefGoogle Scholar
  77. Kreid DK, Parry HL, McGowen LJ, Johnson BM (1979) Performance of a plate fin air-cooled heat exchanger with deluged water augmentation. ASME 79-WA/ENER-1Google Scholar
  78. Lau SC, Kim YS, Han JC (1987) Local end wall heat/mass-transfer distributions in pin fin channels. J Thermophys Heat Transfer 1(4):365–372CrossRefGoogle Scholar
  79. Lee YN (1986) Heat transfer characteristics of canted-rib plate heat exchanger. In: Heat transfer. Hemisphere Publishing Corporation, Washington, DC, no. 6, pp 2817–2822Google Scholar
  80. Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transfer 48(9):1688–1704CrossRefGoogle Scholar
  81. Lee KS, Kim WS, Si JM (2001) Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger. Int J Heat Mass Transfer 44:3223–3231zbMATHCrossRefGoogle Scholar
  82. Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transfer 47:4327–4338CrossRefGoogle Scholar
  83. Li HY, Chen KY (2005) Thermal-fluid characteristics of pin-fin heat sinks cooled by impinging jet. J Enhanc Heat Transf 12(2):189–202CrossRefGoogle Scholar
  84. Li HY, Chen CL, Chao SM, Liang GF (2013) Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int J Heat Mass Transfer 67:666–677CrossRefGoogle Scholar
  85. Li HY, Liao WR, Li TY, Chang YZ (2017) Application of vortex generators to heat transfer enhancement of a pin-fin heat sink. Int J Heat Mass Transfer 112:940–949CrossRefGoogle Scholar
  86. Li WZ, Yan YY, Shen S, Hai Y (1999) An investigation on heat exchanger performance of a new type of plate heat exchanger with dimples. In: IMeChE conf transactions, 6th UK national conf on heat trans, pp 19–25Google Scholar
  87. Lin WW, Lee DJ (1998) Second-law analysis on wavy plate fin-and-tube heat exchangers. J Heat Transfer 120(3):797–800CrossRefGoogle Scholar
  88. Lin WW, Lee DJ (2000) Second-law analysis on a flat plate-fin array under crossflow. Int Commun Heat Mass Transfer 27(2):179–190CrossRefGoogle Scholar
  89. Liu MX, Sheu WJ, Chiang SB, Wang CC (2007) PIV investigation of the flow maldistribution in a multi-channel cold plate subject to inlet locations. J Enhanc Heat Transf 14(1):65–76CrossRefGoogle Scholar
  90. Loehrke RI, Lane JC, Zelenka RL (1979) Heat transfer from interrupted plate surfaces. Technical Report HT-PP791, Mech Eng Department, Colorado State UniversityGoogle Scholar
  91. London AL, Shah RK (1968) Offset rectangular plate-fin surfaces heat transfer and flow friction characteristics. ASME J Eng Power 90:218–228CrossRefGoogle Scholar
  92. Lu F, Yang J, Kwok DY (2004) Numerical and experimental studies on electrical potential distribution of pressure driven flow in parallel plate microchannels. In: Kandlikar SG (ed) Second international conference on microchannels and minichannels. ASME, ICMM2004-2416Google Scholar
  93. Mahmud S, Islam AS, Mamun MAH (2002) Separation characteristics of fluid flow inside two parallel plates with wavy surface. Int J Eng Sci 40(13):1495–1509CrossRefGoogle Scholar
  94. Maiti DK (2002) Heat transfer and flow friction characteristics of plate-fin heat exchanger surfaces – a numerical study, PhD thesis, IIT Kharagpur, IndiaGoogle Scholar
  95. Majumdar P (2005) Computational methods for heat and mass transfer. Taylor & Francis, New YorkGoogle Scholar
  96. Manson SV (1950) Correlations of heat transfer data and of friction data for interrupted plate fins staggered in successive rows, NACA Tech. Note 2237. National Advisory Committee for Aeronautics, Washington, DCGoogle Scholar
  97. Mao J, Rooke S (1994) Transient analysis of extended surfaces with convective tip. Int Commun Heat Mass Transfer 21(1):85–94CrossRefGoogle Scholar
  98. Matsumoto R, Kikkawa S, Senda M, Suzuki M (2000) End wall heat transfer characteristics with a single oblique pin fin. J Enhanc Heat Transfer 7(3):167–184CrossRefGoogle Scholar
  99. Maveety JG, Jung HH (2002) Heat transfer from square pin-fin heat sinks using air impingement cooling. IEEE Trans Compon Packag Technol 25(3):459–469CrossRefGoogle Scholar
  100. McNab CA, Atkinson KN, Heikal MR, Taylor N (1998) Numerical modeling of heat transfer and fluid flow over herringbone corrugated fins, heat transfer 1998, proceedings of 11. Int Heat Transfer Conf 6:119–124Google Scholar
  101. Mercier P, Tochon P (1997) Analysis of turbulent flow and heat transfer in compact heat exchangers by pseudo direct numerical simulation. In: Shah RK (ed) Compact heat exchangers for process industries. Begell House, New York, pp 223–230Google Scholar
  102. Metwally HM, Manglik RM (2004) Enhanced heat transfer due to curvature- induced lateral vortices in laminar flows in sinusoidal corrugated plate channels. Int J Heat Mass Transfer 47:2283–2292CrossRefGoogle Scholar
  103. Metzger DE, Berry RA, Bronson JP (1982) Developing heat transfer in rectangular ducts with staggered arrays of short pin fins. J Heat Transf 104:700–706CrossRefGoogle Scholar
  104. Metzger DE, Fan CS, Haley SW (1984) Effects of pin shape and array orientation on heat transfer and pressure loss in pin-fin arrays. J Eng Gas Turbines Power 106:252–257CrossRefGoogle Scholar
  105. Metzger DE, Shepard WB, Haley SW (1986, June) Row resolved heat transfer variations in pin-fin arrays including effects of non-uniform arrays and flow convergence. In: ASME 1986 international gas turbine conference and exhibit. American Society of Mechanical Engineers, pp V004T09A015–V004T09A015Google Scholar
  106. Michallon E, Marvillet C, Lebouche M (1996) Thermal and hydraulic characteristics of plate-fin heat exchangers in single phase flow. In: Afgan N, Carvalho MG, Bar-Cohen A, Butterworth D, Roetzel W (eds) New dev in heat exchangers. Gordon and Breach Publishers, London, pp 351–362Google Scholar
  107. Mikulln EI, Shevich YA, Potapov VN (1979) Efficiency of perforated plate array heat exchangers. Chem Petrol Eng 15(5–6):351–355CrossRefGoogle Scholar
  108. Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transfer 53:3023–3029CrossRefGoogle Scholar
  109. Minakami K, Ishizuka M, Mochizuki S (1995) Performance evaluation of pin-fin heat sinks utilizing a local heating method. J Enhanc Heat Transf 2:17–22CrossRefGoogle Scholar
  110. Minakami K, Mochizuki S (1992) Heat transfer characteristics of pin-fins with in-line arrangement (effect of the pin pitch). Proc JSME 920-17:242Google Scholar
  111. Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1992) Visualization of flow mixing mechanisms in pin-fin arrays. In: Flow visualization. Springer, Berlin, Heidelberg, pp 504–508CrossRefGoogle Scholar
  112. Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1993a) Heat transfer characteristics of the pin-fin heat sink (mechanism and effect of turbulence in the pin array). In: International symposium on transport phenomena in thermal engineering, pp 67–72Google Scholar
  113. Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1993b) Heat transfer characteristics of pin-fins with in-line arrangement (1st report, effect of the pin pitch). Trans Jpn Soc Mech Eng Part B 59(567):3602–3609CrossRefGoogle Scholar
  114. Mithun Krishna PM, Deepu M, Shine SR (2018) Numerical investigation of wavy microchannels with rectangular cross section. J Enhanc Heat Transf 25(4–5):293–313CrossRefGoogle Scholar
  115. Mochizuki S, Yagi S (1975) Heat transfer and friction characteristics of strip fins. Int J Refrig 50:36–59Google Scholar
  116. Mochizuki S, Yagi Y, Yang WJ (1988) Flow pattern and turbulent intensity in stacks of interrupted parallel plate surfaces. Exp Therm Fluid Sci I:51–57CrossRefGoogle Scholar
  117. Mochizuki S, Yagi Y (1990) Performance evaluation of pin-fin heat exchangers by automated transient testing method. In: Heat Trans 1990, vol 3. Hemisphere Publishing Corporation, pp 217–212Google Scholar
  118. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRefGoogle Scholar
  119. Mohammed H, Gunnasegaran P, Shuaib N (2011) Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transfer 38(1):63–68CrossRefGoogle Scholar
  120. Molki M, Yuen CM (1986) Effect of interwall spacing on heat transfer and pressure drop in a corrugated wall channel. Int J Heat Mass Transfer 29:987–997CrossRefGoogle Scholar
  121. Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43(7):631–651CrossRefGoogle Scholar
  122. Muley A, Borghese JB, White SL, Manglik RM (2006) Enhanced thermal-hydraulic performance of a wavy-plate-fin compact heat exchanger: effect of corrugation severity. In: ASME 2006 international mechanical engineering congress and exposition, pp 701–707Google Scholar
  123. Mullisen RS, Loehrke RI (1983) Enhanced heat transfer in parallel plate arrays. ASME. 83-Ht-43Google Scholar
  124. Naik S, Probert SD, Shilston MJ (1986) Maximizing the performances of flat-plate heat exchangers experiencing free or forced convection. Appl Energy 22:225–239CrossRefGoogle Scholar
  125. Nilles MJ, Calkins ME, Dingus ML, Hendricks JB (1995) Heat transfer and flow friction in perforated plate heat exchangers. Exp Therm Fluid Sci 11:238–247CrossRefGoogle Scholar
  126. Nunez MP, Polley GT (1999) Methodology for the design of multi-stream plate-fin heat exchangers. In: Sunden B, Heggs PJ (eds) Recent advances in analysis of heat transfer for fin type surfaces. Computational Mechanics, Billerica, MA, pp 277–293Google Scholar
  127. O’Brien JE, Sparrow EM (1982) Corrugated-duct heat transfer, pressure drop and flow visualization. J Heat Transfer 104:410–416CrossRefGoogle Scholar
  128. Okada K, Ono M, Tomimura T, Okuma T, Konno H, Ohtani S (1972) Design and heat transfer characteristics of new plate type heat exchanger. Heat Trans Jpn Res 1(1):90–95Google Scholar
  129. Onishi H, Inaoka K, Suzuki K (2001) A three dimensional unsteady numerical analysis for a plate-finned heat exchanger in the middle Reynolds number range. In: Shah RK, Deakin AW, Honda H, Rudy TM (eds) Proc of the third int conf on compact heat exchangers and enhancement technology for the process industries. Begell House Inc., New York, pp 9–16Google Scholar
  130. Oosthuizen PH, Garrett M, (2001) A numerical study of natural convective heat transfer from an inclined plate with a “wavy” surface. In: Proc of 2001 ASME int mech eng congress and exposition. ASME paper no IMECE2001/HTD-24112, New York, NYGoogle Scholar
  131. Oviedo-Tolentino F, Romero-M’endez R, Hern’andez-Guerrero A, Gir’on-Palomares B (2008) Experimental study of fluid flow in the entrance of a Sinusoidal Channel. Int J Heat Fluid Flow 29(5):1233–1239CrossRefGoogle Scholar
  132. Park K, Choi D, Lee K (2004) Optimum design of plate heat exchangers with staggered pin arrays. Numer Heat Transfer Part A 45:347–361CrossRefGoogle Scholar
  133. Park K, Rew KH, Kwon JT, Kim BS (2007) Optimal solutions of pin-fin type heat sinks for different fin shapes. J Enhanc Heat Transf 14(2):93–104CrossRefGoogle Scholar
  134. Patankar SV, Prakash C (1981) An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted plate passages. Int J Heat Mass Transfer 24:1801–1810zbMATHCrossRefGoogle Scholar
  135. Peng Y (1983) Heat transfer and friction loss characteristics of pin fin cooling configurations. J Engg. for Gas Turbines and Power 106(1):246–251CrossRefGoogle Scholar
  136. Pesteei SM, Subbarao PMV, Agarwal RS (2005) Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng 25:1684–1696CrossRefGoogle Scholar
  137. Picon-Nuñez M, Polley GT, Torres-Reyes E, Gallegos-Muñoz A (1999) Surface selection and design of plate–fin heat exchangers. Appl Therm Eng 19:917–931CrossRefGoogle Scholar
  138. Prakash C, Lounsbury R (1986) Analysis of laminar fully developed flow in plate-fin passages: effect of fin shape. J Heat Transfer 108:693–697CrossRefGoogle Scholar
  139. Prakash C, Sparrow EM (1980) Natural convection heat transfer performance evaluations for discrete-(in-line or staggered) and continuous-plate arrays. Numer Heat Transfer 3(1):89–105CrossRefGoogle Scholar
  140. Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transfer 45(12):2549–2565CrossRefGoogle Scholar
  141. Ranganayakulu Ch, Sheik Ismail L, Vengudupathi C (2006) Uncertainties in estimation of Colburn (j) factor and Fanning friction (f) factor for offset strip fin and wavy fin compact heat exchanger surfaces. In: Mishra SC, Prasad BVSSS, Garimella SV (eds) Proceedings of the XVIII national and VII ISHMT – ASME heat and mass transfer conference, Guwahati India, pp 1096–1103Google Scholar
  142. Riddell RA (1966) Heat transfer and flow friction characteristics of a plate-fin type cross-flow heat exchanger with perforated fins. MS thesis in Mech Eng U.S. Naval Postgraduate SchoolGoogle Scholar
  143. Rocha LAO, Saboya FEM, Vargas JVC (1997) A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers. Int J Heat Fluid Flow 18:247–252CrossRefGoogle Scholar
  144. Rodrigues R, Yanagihara JI (1999) Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchanges. In: Proc of the 5th ASME/JSME thermal eng joint conference paper ATJE99-6407Google Scholar
  145. Rodriquez JI, Mills AF (1996) Heat transfer and flow friction characteristics of perforated-plate heat exchangers. Exp Heat Transfer 9(4):335–356CrossRefGoogle Scholar
  146. Ros C, Jallut C, Grillot JM, Amblard M (1995) A transient-state technique for the heat transfer coefficient measurement in a corrugated plate heat exchanger channel based on frequency response and residence time distribution. Int J Heat Mass Transfer 38:1317–1325CrossRefGoogle Scholar
  147. Rosaguti NR, Fletcher DF, Haynes BS (2006) Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section. Int J Heat Mass Transfer 49(17):2912–2923zbMATHCrossRefGoogle Scholar
  148. Rosaguti NR, Fletcher DF, Haynes BS (2007) Low-Reynolds number heat transfer enhancement in sinusoidal channels. Chem Eng Sci 62(3):694–702CrossRefGoogle Scholar
  149. Rosenblad G, Kullendorf A (1975) Estimating heat transfer rates from mass transfer studies on plate heat exchanger surfaces. Wiirme Stoffubertrag 8:187–191CrossRefGoogle Scholar
  150. Rosman EC, CaraiLlescov P, Saboya FEM (1984) Performance of one-and two-row tube and plate fin heat exchangers. J Heat Transfer 106:627–632CrossRefGoogle Scholar
  151. Rostami J, Abbassi A, Saffar-Avval M (2015) Optimization of conjugate heat transfer in wavy walls microchannels. Appl Therm Eng 82:318–328CrossRefGoogle Scholar
  152. Rush T, Newell T, Jacobi A (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transfer 42(9):1541–1553CrossRefGoogle Scholar
  153. Saboya FE, Sparrow EM (1976) Transfer characteristics of two-row plate fin and tube heat exchanger configurations. Int J Heat Mass Transfer 19(1):41–49CrossRefGoogle Scholar
  154. Saha A (2008) Effect of the number of periodic module on flow and heat transfer in a periodic array of cubic pin-fins inside a channel. J Enhanc Heat Transf 15(3):243–260CrossRefGoogle Scholar
  155. Saha AK, Acharya S (2004) Unsteady flow and heat transfer in parallel plate heat exchangers with in-line and staggered arrays of posts. Numer Heat Transfer Part 45:101–133CrossRefGoogle Scholar
  156. Saniei N, Dini S (1993) Heat transfer characteristics in a wavy-walled channel. J Heat Transfer 115(3):788–792CrossRefGoogle Scholar
  157. Sasao K, Honma M, Nishihara A, Atarashi T (1999) Numerical analysis of impinging air flow and heat transfer in plate-fin type heat sinks. In: Proc of the Pacific rim/ASME int intersociety electronic and photonic packaging conf, Maui Hawaii, Inter PACK EEP, vol 26, no 1, pp 493–499Google Scholar
  158. Shah RK (1975) Perforated heat exchanger surfaces: prut 2-heat transfer and flow friction characteristics. ASME Paper 75-WA/HT-9, New YorkGoogle Scholar
  159. Shah RK, London AL (1978) Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. Academic Press, New YorkGoogle Scholar
  160. Shen J, Gu W, Zhang Y (1987) An investigation on the heat transfer augmentation and friction loss performances of plate-perforated fin surfaces. In: Wang BX (ed) Heat transfer science and technology. Hemisphere, Washington, DC, pp 798–804Google Scholar
  161. Shohtani H (1990) The experimental research on condensation of the plate-fin heat exchangers, using non-azeotropic refrigerant mixtures. In: Proceedings of the second international symposium on condensers and condensation, University of Bath, UK, Heat transfer and fluid flow service, pp 367–376Google Scholar
  162. Shwaish IK, Amon CH, Murthy JY (2002) Thermal/fluid performance evaluation of serrated plate fin heat sinks. In: Proc of the 8th intersociety conf on thermal and thermo-mech phenomena in electronic systems. ITherm, San Diego, CA, pp 267–275Google Scholar
  163. Shwaish IK, Murthy JY, Amon CH, Bains D (2001) Performance evaluation of serrated plate fins for under-carriage electronics cooling in transportation application. In: Proc ASME int mech eng congress and exposition, ASME, New York, paper no IMECE2001/HTD-24391Google Scholar
  164. Sheik Ismail L, Ranganayakulu C, Shah RK (2009) Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins. Int J Heat Mass Transf 52(17–18):3972–3983CrossRefGoogle Scholar
  165. Singh SK, Mishran M, Jha PK (2014) Nonuniformities in compact heat exchangers—scope for better energy utilization: a review. Renew Sustain Energy Rev 40:583–596CrossRefGoogle Scholar
  166. Sinha A, Raman KA, Chattopadhyay H, Biswas G (2013) Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers. Int J Heat Mass Transfer 57:202–214CrossRefGoogle Scholar
  167. Song R, Cui M, Liu J (2017) A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. Int J Heat Mass Transfer 115:695–705CrossRefGoogle Scholar
  168. Soodphakdee D, Behnia M, Copeland D (2000) A comparison of fin geometrics for heat sinks in laminar forced convection: Part I – Round elliptical and plate fins in staggered and inline configurations. Int J Microcirc Electron Packag 24(1):68–76Google Scholar
  169. Souidi N, Bontemps A (2001) Concurrent gas-liquid flow in plate-fin heat exchangers with plain and perforated fins. Int J Heat Fluid Flow 22(4):450–459CrossRefGoogle Scholar
  170. Sparrow EM, Baliga BR, Patankar SV (1977) Heat transfer and fluid flow analysis of interrupted wall channels with application to heat exchangers. J Heat Transfer 99:4–11CrossRefGoogle Scholar
  171. Sparrow EM, Hossfeld M (1984) Effect of rounding protruding edges on heat transfer and pressure drop in a duct. Int J Heat Mass Transfer 27:1715–1723CrossRefGoogle Scholar
  172. Stasiek J, Collins MW, Ciofalo M, Chew PE (1996) Investigation of flow and heat transfer in corrugated passages – I. Experimental results. Int J Heat Mass Transfer 39:149–164CrossRefGoogle Scholar
  173. Suga T, Aoki H (1991) Numerical study on heat transfer and pressure drop in multilouvered fins. In: Proc ASME/JSME joint thermal engineering conference, vol 4Google Scholar
  174. Suga K, Aoki H (1995) Numerical study on heat transfer and pressure drop in multilouvered fins. J Enhanc Heat Transfer 2(3):231–238CrossRefGoogle Scholar
  175. Suga K, Aoki H, Shinagawa T (1990) Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids. JSME Int J Ser 2 33(1):122–127Google Scholar
  176. Sui Y, Lee P, Teo C (2011) An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. Int J Therm Sci 50(12):2473–2482CrossRefGoogle Scholar
  177. Sui Y, Teo C, Lee P, Chew Y, Shu C (2010) Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transfer 53(13–14):2760–2772zbMATHCrossRefGoogle Scholar
  178. Sunden B (1999) Flow and heat transfer mechanisms in plate-frame heat exchangers. In: Kakac S (ed) Heat transfer enhancement of heat exchangers. Kluwer Academic, Dordrecht, pp 185–206CrossRefGoogle Scholar
  179. Suryanarayana NV (1975) Transient response of straight fins. J Heat Transfer 97(3):417–423CrossRefGoogle Scholar
  180. Suzuki K, Xi GN, Inaoka K, Hagiwara Y (1994) Mechanism of heat transfer enhancement due to self sustained oscillation for an in-line fin array. Int J Heat Mass Transfer 37(1):83–96zbMATHCrossRefGoogle Scholar
  181. Tafti DK, Wang G, Lin W (2000) Flow transition in a multilouvered fin array. Int J Heat Mass Transfer 43:901–919zbMATHCrossRefGoogle Scholar
  182. Tao YB, He YL, Huang J, Wu ZG, Tao WQ (2007a) Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. Int J Therm Sci 46:768–778zbMATHCrossRefGoogle Scholar
  183. Tao YB, He YL, Wu ZG, Tao WQ (2007b) Numerical design of an efficient wavy fin surface based on the local heat transfer coefficient study. J Enhanc Heat Transf 14(4):315–332CrossRefGoogle Scholar
  184. Theoclitus G (1966) Heat transfer and flow-friction characteristics of nine pin-fin surfaces. J Heat Transfer 88:383–390CrossRefGoogle Scholar
  185. Thomas DG (1966) Forced convection mass transfer: Part III. Increased mass transfer from a flat plate caused by the wake from cylinders located near the edge of the boundary layer. AIChE 12:124–130CrossRefGoogle Scholar
  186. Tian LT, He YL, Lei YG, Tao WQ (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transfer 36:111–120CrossRefGoogle Scholar
  187. Tischenko ZV, Bondarenko VN (1983) Comparison of the efficiency of smooth-finned plate heat exchangers. Int Chem Eng 23(3):550–557Google Scholar
  188. Tishchenko ZV, Bondarenko VN, Golechek LI (1979) Heat transfer and pressure drop in gas-carrying ducts formed by smooth-finned plate-type heat- exchange surfaces. Heat Trans Sov Res 11(5):117–124Google Scholar
  189. Tolpadi AK, Kuehn TH (1984) Conjugate three-dimensional natural convection heat transfer from a horizontal cylinder with long transverse plate fins. Numer Heat Trans 7:319–141zbMATHGoogle Scholar
  190. Torikoshi K, Kawabata K (1989) Heat transfer and flow friction characteristics of a mesh finned air-cooled heat exchanger. In: Figliola RS, Kaviany M, Ebadian MA (eds) Convection heat transfer and transport processes. ASME symp HTD, vol 116, pp 71–77Google Scholar
  191. Toyoshima S, Fukumoto H, Nakagawa Y, Sakamoto Y (1986) Numerical analysis on flow of plate-fin heat exchangers. In: Proceedings 246th lecture meeting of the Japan Society of Mechanical Engineers Kansai Branch, pp 864–871Google Scholar
  192. VanFossen GJ (1981, March) Heat transfer coefficients for staggered arrays of short pin fins. In: ASME 1981 international gas turbine conference and products show. American Society of Mechanical Engineers, pp V003T09A003–V003T09A003Google Scholar
  193. Wang YQ, Dong QW, Liu MS, Wang D (2009) Numerical study on plate-fin heat exchangers with plain fins and serrated fins at low Reynolds number. Chem Eng Technol 32(8):1219–1226CrossRefGoogle Scholar
  194. Wang CC, Fu WL, Chang CT (1997) Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Exp Therm Fluid Sci 14:147–186CrossRefGoogle Scholar
  195. Wang CC, Lo J, Lin YT, Wei CS (2002) Flow visualization of annular and delta winglet vortex generators in fin-and-tube heat exchanger application. Int J Heat Mass Transfer 45:3803–3815CrossRefGoogle Scholar
  196. Wang G, Vanka S (1995) Convective heat transfer in periodic wavy passages. Int J Heat Mass Transfer 38(17):3219–3230zbMATHCrossRefGoogle Scholar
  197. Webb RL (1987) In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase heat transfer, vol 17. John Wiley, New York, pp 1–17.62, Chapter 17Google Scholar
  198. Webb RL, Trauger P (1991) The flow structure in the louver fin heat exchanger geometry. Exp Therm Fluid Sci 4:205–217CrossRefGoogle Scholar
  199. Wen J, Li K, Wang C, Zhang X, Wang S (2019) Optimization investigation on configuration parameters of sine wavy fin in plate-fin heat exchanger based on fluid structure interaction analysis. Int J Heat Mass Transfer 131:385–402CrossRefGoogle Scholar
  200. Wen J, Li Y, Zhou A, Zhang K (2006) An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger. Int J Heat Mass Transfer 49(9–10):1667–1678CrossRefGoogle Scholar
  201. Wen J, Yang HZ, Jian GP, Tong X, Li K, Wang SM (2016a) Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging meta model based on MOGA. Int J Heat Mass Transfer 98:29–39CrossRefGoogle Scholar
  202. Wen J, Yang H, Tong X, Li K, Wang S, Li Y (2016b) Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm. Int J Therm Sci 101:116–125CrossRefGoogle Scholar
  203. Wen J, Yang H, Tong X, Li K, Wang S, Li Y (2016c) Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Convers Manag 117:482–489CrossRefGoogle Scholar
  204. Wieting AR (1975) Empirical correlations for heat transfer and flow friction characteristics of rectangular offset fin heat exchangers. J Heat Transfer 97:488–490CrossRefGoogle Scholar
  205. Xi G, Hagiwara Y, Suzuki K (1995) Flow instability and augmented heat transfer of fin arrays. J Enhanc Heat Transf 2:23–32CrossRefGoogle Scholar
  206. Xi GN, Shah RK (1999) Numerical analysis of OSF heat transfer and flow friction characteristics. In: Mohamad AA, Sezai I (eds) Proc int conf computational heat and mass transfer. Eastern Mediterranean University Printing house, Eazimaguse, Cyprus, pp 75–87Google Scholar
  207. Xie G, Liu J, Liu Y, Sunden B, Zhang W (2013) Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling. J Electron Packag 135:021008–021011CrossRefGoogle Scholar
  208. Xu W, Min J (2004) Numerical predictions of fluid flow and heat transfer in corrugated channels. In: Proc intl symp on heat transfer enhancement and energy conservation, Guangzhou, China, vol 1, pp 714–721Google Scholar
  209. Xuan YM, Zhang HL, Ding R (2001) Heat transfer enhancement and flow visualization of wavy perforated plate-and-fin surface. In: Shah RK, Deakin AW, Honda H, Rudy TM (eds) Proc third international conference on compact heat exchangers and enhancement technology for the process industries. Begell House, New York, pp 215–222Google Scholar
  210. Yakushin AN (1977) Determination of optimal characteristics of finned/plate heat exchangers. Therm Eng 24(1):64–67Google Scholar
  211. Yang JW (1972) Periodic heat transfer in straight fins. J Heat Transfer 94(3):310–314CrossRefGoogle Scholar
  212. Yang LC, Asako Y, Yamaguchi Y, Faghri M (1995) Numerical prediction of transitional characteristics of flow and heat transfer in a corrugated duct in heat transfer in turbulent flows. ASME Symp Ser HTD 318:145–152Google Scholar
  213. Yang KS, Li SL, Chen IY, Chien KH, Hu R, Wang CC (2010) An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int J Heat Mass Transfer 53:5675–5681CrossRefGoogle Scholar
  214. Yang H, Wen J, Tong X, Li K, Wang S, Li Y (2016) Numerical investigation on configuration improvement of a plate-fin heat exchanger with perforated wing-panel header. J Enhanc Heat Transf 23(1):1–21CrossRefGoogle Scholar
  215. Yu X, Feng J, Feng Q, Wang Q (2005) Development of plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl Therm Eng 24:173–182CrossRefGoogle Scholar
  216. Yu D, Jeon W, Kim SJ (2017) Analytic solutions of the friction factor and the Nusselt number for the low-Reynolds number flow between two wavy plate fins. Int J Heat Mass Transfer 115:307–316CrossRefGoogle Scholar
  217. Zhang LW, Balachandar S, Tafti DK, Najjar FM (1997) Heat transfer enhancement mechanisms in inline and staggered parallel-plate fin heat exchangers. Int J Heat Mass Transfer 40:2307–2325zbMATHCrossRefGoogle Scholar
  218. Zhang J, Kundu J, Manglik RM (2004) Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int J Heat Mass Transfer 47:1719–1730CrossRefGoogle Scholar
  219. Zhang LW, Tafti DK, Najjar FM, Balachandar S (1997) Computations of flow and heat transfer in parallel plate fin heat exchangers on the CM-5: effects of flow unsteadiness and three-dimensionality. Int J Heat Mass Transfer 40:1325–1341zbMATHCrossRefGoogle Scholar
  220. Zhang Z, Yanzhong L (2003) CFD simulation on inlet configuration of plate-fin heat exchanger. Int J Cryogenic Eng 43:673–678CrossRefGoogle Scholar
  221. Zhou J, Hatami M, Song D, Jing D (2016) Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int J Heat Mass Transfer 103:715–724CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sujoy Kumar Saha
    • 1
  • Hrishiraj Ranjan
    • 1
  • Madhu Sruthi Emani
    • 1
  • Anand Kumar Bharti
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Engineering, Science and Technology, ShibpurHowrahIndia

Personalised recommendations