Advertisement

Halophytes and Heavy Metals: Interesting Partnerships

  • G. C. Nikalje
  • N. Saini
  • Penna Suprasanna
Chapter

Abstract

The expanse of urbanization and industrialization has imposed severe consequences of ecosystem contamination through the accumulation of toxic soluble salts and heavy metals. Since this imposes a serious threat to human health, immediate action for remediation of such soil and water bodies is imperative. In this context, utilization of metal-tolerant plants with potential to hyperaccumulate toxic metal ions offers a feasible and eco-friendly option. Halophytes being salt-loving, and native of saline and marshy areas, are capable of adapting to severe abiotic stresses, which occur in their surrounding natural environment. Halophytes adopt three strategies, which include accumulation of metal ions into the vacuole, exclusion of metal ions from roots, and excretion of metal ions from salt glands. A number of halophytes have been studied for their potential for toxic metal accumulation and/or tolerance to high concentration of metal ions. Interestingly, some halophytes, like Sesuvium portulacastrum, exhibit hyperaccumulation of different metals like cadmium, lead, arsenic, nickel, and cesium, and, when exposed to NaCl, these plant species show higher tolerance to metal stress. The ability of halophytes to tolerate both metal and salt stress has been exploited for phytoextraction and phytostabilization of metal-contaminated soil. In this chapter, halophytes responses to heavy metals, common mechanism of metal and salt tolerance of halophytes, and their utilization for restoration of metal-contaminated soils are discussed.

Keywords

Halophytes Heavy metals Salt tolerance Metal toxicity Phytoremediation Phytostabilization Metal-contaminated sites 

References

  1. Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1196PubMedCrossRefGoogle Scholar
  2. Alloway BJ (2013) Introduction. In: Alloway BJ (ed) Environmental pollution heavy metals in soils. Springer, Netherlands, pp 3–9CrossRefGoogle Scholar
  3. Amarasinghe V, Watson L (1998) Comparative ultrastructure of microhairs in grasses. Bot J Linn Soc 98:303–319CrossRefGoogle Scholar
  4. Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12.  https://doi.org/10.1093/mp/ssn094CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ayyappan D, Sathiyaraj G, Ravindran KG (2016) Phytoextraction of heavy metals by Sesuvium portulacastrum l. A salt marsh halophyte from tannery effluent. Int J Phytoremediation 18:453–459.  https://doi.org/10.1080/15226514.2015.1109606CrossRefPubMedGoogle Scholar
  6. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants: heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC Press, Boca Raton, pp 155–177Google Scholar
  7. Baker AJM, Reeves RD, Mc Grath SP (1991) In situ decontamination of heavy metal polluted soils using crops of heavy metal accumulating plants—a feasibility study. In: Hinchee RE, Olfenbuttel RF, Heinemann B (eds) In situ bioreclamation. Butter Worth Heinemann, Boston, MA, pp 600–605CrossRefGoogle Scholar
  8. Barhoumi Z, Djebali W, Abdelly C, Chaïbi W, Smaoui A (2008) Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress. Protoplasma 233:195–202PubMedCrossRefGoogle Scholar
  9. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256:67–83CrossRefGoogle Scholar
  10. Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica Juncea. Int J Phytoremediation 7:153–155PubMedCrossRefGoogle Scholar
  11. Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817PubMedCrossRefGoogle Scholar
  12. Burchett MD, Mac Farlane GR, Pulkownik A (2003) Accumulation and distribution of heavy metals in the grey mangrove Avicennia marina (Forsk.) Vierh: biological indication potential. Environ Pollut 123:139–151PubMedCrossRefGoogle Scholar
  13. Burke D, Weis J, Weis P (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51:153CrossRefGoogle Scholar
  14. Cacador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290PubMedCrossRefGoogle Scholar
  15. Capiati DA, Pais SM, Tellez-Inon MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J Exp Bot 57:2391–2400PubMedCrossRefGoogle Scholar
  16. Carrasco L, Caravaca F, Alvarez-Rogel J, Roldan A (2006) Microbial processes in the rhizosphere soil of a heavy metals-contaminated Mediterranean salt marsh: a facilitating role of AM fungi. Chemosphere 64:104–111PubMedCrossRefGoogle Scholar
  17. Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium contaminated soil. Planta 216:939–950PubMedGoogle Scholar
  18. Carvalho SM, Cacador I, Martins-Loucao MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant and Soil 285:161–169CrossRefGoogle Scholar
  19. Chaffei C, Gouia H, Ghorbel MH (2003) Nitrogen metabolism in tomato plants under cadmium stress. J Plant Nutr 26:1617–1634CrossRefGoogle Scholar
  20. Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yangand Z, Huang B (2016) Functional identification and characterization of genes cloned from halophyte seashore paspalum conferring salinity and cadmium tolerance. Front Plant Sci 7:102PubMedPubMedCentralGoogle Scholar
  21. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236.  https://doi.org/10.1093/jxb/erh005CrossRefPubMedGoogle Scholar
  22. Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238PubMedCrossRefGoogle Scholar
  23. Dassanayake M, Larkin MD (2017) Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front Plant Sci 8:406PubMedPubMedCentralGoogle Scholar
  24. de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168PubMedCrossRefGoogle Scholar
  25. Degryse F, Smolders E, Merckx R (2006) Labile Cd complexes increase Cd availability to plants. Environ Sci Tech 40:830–836CrossRefGoogle Scholar
  26. Dhar R, Sagesser R, Weikert C, Wagner A (2013) Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Mol Biol Evol 30:573–588.  https://doi.org/10.1093/molbev/mss253CrossRefPubMedGoogle Scholar
  27. Dong J, Wu FB, Zhang GP (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci B 6:974–980PubMedPubMedCentralCrossRefGoogle Scholar
  28. Duarte B, Delgado M, Cacador I (2007) The role of citric acid in cadmium and nickel uptake and translocation in Halimonie portulacoides. Chemosphere 69:836–840PubMedCrossRefGoogle Scholar
  29. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450CrossRefGoogle Scholar
  30. Fasenko E, Edwards R (2014) Plant synthetic biology: a new platform for industrial biotechnology. J Exp Bot 65(8):1927–1937CrossRefGoogle Scholar
  31. Feng ZT, Sun QJ, Deng YQ, Sun SF, Zhang JG, Wang BS (2014) Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor. Acta Physiol Plant 36:2729–2741CrossRefGoogle Scholar
  32. Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67:2025–2037PubMedCrossRefGoogle Scholar
  33. Gavrilescu M, Demnerova K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 32:147–156PubMedCrossRefGoogle Scholar
  34. Ghanem ME, Han RM, Classen B, Quetin-Leclerq J, Mahy G, Ruan CJ, Qin P, Perez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392CrossRefGoogle Scholar
  35. Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67(1):72–79PubMedCrossRefGoogle Scholar
  36. Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implications of organic acids in the long-distance transport and accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454PubMedCrossRefGoogle Scholar
  37. Girault L, Boudou A, Dufourc EJ (1998) 113Cd-, 31P-NMR and fluorescence polarization studies of cadmium(II) interactions with phospholipids in model membranes. Biochim Biophys Acta 1414:140–154PubMedCrossRefGoogle Scholar
  38. Govindasamy Agoramoorthy, Fu-An Chen, Minna J. Hsu, (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution 155 (2):320-326PubMedCrossRefGoogle Scholar
  39. Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li +, Na+ and Cl-) by Tamarix aphylla. Physiol Plant 73:541CrossRefGoogle Scholar
  40. Hartley- Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate- induced oxidative stress in Holcus lanatus L: clones with differential sensitivity. Plant Cell Environ 24:13–22CrossRefGoogle Scholar
  41. James BR, Barlett RJ (1983) Behavior of chromium in soils VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181CrossRefGoogle Scholar
  42. Jose R, Peralta-Videa LML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677CrossRefGoogle Scholar
  43. Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342PubMedCrossRefGoogle Scholar
  44. Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediation 10:31–46PubMedCrossRefGoogle Scholar
  45. Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139PubMedCrossRefGoogle Scholar
  46. Kelishadi R, Moeini R, Poursafa P, Farajian S, Yousefy H, Okhovat- Souraki A (2014) Independent association between air pollutants and vitamin D deficiency in young children in Isfahan, Iran. Paediatr Int Child Health 34:50–55PubMedCrossRefGoogle Scholar
  47. Kramer U, Talke AN, Hanikenne M (2007) Transition metal transport. FEBS Letters, 581 (12): 2263–2272.PubMedCrossRefGoogle Scholar
  48. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267.  https://doi.org/10.1016/S1360-1385(01)01946-XCrossRefPubMedGoogle Scholar
  49. Lea PJ, Miflin BJ (2004) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41:555–564.  https://doi.org/10.1016/S0981-9428(03)00060-3CrossRefGoogle Scholar
  50. Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439CrossRefGoogle Scholar
  51. Lefevre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152CrossRefGoogle Scholar
  52. Lefèvre I, Marchal G, Edmond Ghanem M, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167(5):365–374PubMedCrossRefGoogle Scholar
  53. Lefevre I, Vogel-Mikus K, Jeromel L, Vavpetic P, Planchon S, Arčon I, Van Elteren JT, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320.CrossRefGoogle Scholar
  54. Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374.  https://doi.org/10.3389/fpls.2013.00374CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li L, Liu X, Peijnenburg WJGM, Zhao J, Chen X, Yu J, Wu H (2012) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxico Env Safety 75:1–7CrossRefGoogle Scholar
  56. Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853PubMedCrossRefGoogle Scholar
  57. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219PubMedCrossRefGoogle Scholar
  58. Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 29–56CrossRefGoogle Scholar
  59. Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011) Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L.) L. Chemosphere 82(4):529–534PubMedCrossRefGoogle Scholar
  60. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115(3):509–528PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33(4):1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  62. MacFarlane GR, Burchett MD (1999) Zink distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environ Exp Bot 41:167–175CrossRefGoogle Scholar
  63. MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquatic Bot 68:45–59CrossRefGoogle Scholar
  64. MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464PubMedCrossRefGoogle Scholar
  65. Maleva MG, Nekrasova GF, Borisova GG, Chukina NV, Ushakova OS (2012) Effect of heavy metal on photosynthetic apparatus and antioxidant status of elodea. Russ J Plant Physiol 59:190–197.  https://doi.org/10.1134/S1021443712020069CrossRefGoogle Scholar
  66. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Technol 11:843–872CrossRefGoogle Scholar
  67. Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Eviron Pollut Res 16:844–854.  https://doi.org/10.1007/s11356-009-0224-3CrossRefGoogle Scholar
  68. Manousaki E, Kalogerakis N (2011) Halophytes-an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969PubMedCrossRefGoogle Scholar
  69. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefGoogle Scholar
  70. Manousaki E, Kosmoula G, Lamprini P, Kalogerakis N (2014) Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Int J Phytoremediation 16:755–769PubMedCrossRefGoogle Scholar
  71. Mariem W, Fourati E, Hmaeid N, Ghabriche R, Poschenrieder C, Abdelly C, Ghnaya T (2015) NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res 22:10769–10777CrossRefGoogle Scholar
  72. Mazharia M, Homaeed M (2012) Annual halophyte Chenopodium botrys can phytoextract cadmium from contaminated soils. J Basic Applied Sci Res 2:1415–1422Google Scholar
  73. Mucha AP, Almeida CM, Bordalo AA, Vasconcelos MT (2005) Exudation of organic acids by a marsh plant and implication on trace metal availability in the rhizosphere of estuarine sediments. Estuar Coast Shelf Sci 65:191–198CrossRefGoogle Scholar
  74. Muchate N, Nikalje GC, Rajurkar N, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora Morphol Distrib Funct Ecol Plants:96–105CrossRefGoogle Scholar
  75. Munne-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19.  https://doi.org/10.1104/pp.112.205690CrossRefPubMedGoogle Scholar
  76. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324CrossRefGoogle Scholar
  77. Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717CrossRefGoogle Scholar
  78. Nikalje GC, Suprasanna P (2018) Coping with metal toxicity – cues from halophytes. Front Plant Sci 9:777.  https://doi.org/10.3389/fpls.2018.00777CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nikalje GC, Mirajkar SJ, Nikam TD, Suprasanna P (2017a) Multifaceted role of ROS in halophytes: signaling and defense. In: Zargar S et al (eds) Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer, pp 207–223Google Scholar
  80. Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2017b) Halophytes in biosaline agriculture: mechanism, utilization and value added products. Land Degrad Dev 29(4):1081–1095.  https://doi.org/10.1002/ldr.2819CrossRefGoogle Scholar
  81. Nikalje GC, Nikam TD, Suprasanna P (2017c) Looking at halophytic adaptation through mechanisms of ROS, redox regulation and signaling. Curr Genomics 18(6):542–552PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nikalje GC, Variyar PS, Joshi MV, Nikam TD, Suprasanna P (2018) Temporal and spatial changes in ion homeostasis and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. Plos One 13(4):e0193394.  https://doi.org/10.1371/journal.pone.0193394CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nikalje GC, Srivastava M, Nikam TD, Suprasanna P (2019a) Cesium induced physiobiochemical responses in a halophyte Sesuvium portulacastrum L. Agric Nat Resour (Accepted)Google Scholar
  84. Nikalje GC, Kushi Y, Suprasanna P (2019b) Halophyte responses and tolerance to abiotic stresses. In: Hasanuzzaman M et al (eds) Ecophysiology, abiotic stress responses and utilization of halophytes. 978-981-13-3761-1, 454366_1_En, (1) (In press)Google Scholar
  85. Nikalje GC, Shelke DB, Kushi Y, Suprasanna P (2019c) Halophytes: prospective plants for future. In: Hasanuzzaman M et al (eds) Ecophysiology, abiotic stress responses and utilization of halophytes. 978-981-13-3761-1, 454366_1_En, (10) (In press)CrossRefGoogle Scholar
  86. Oosten MJV, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146CrossRefGoogle Scholar
  87. Pan C, Lu H, Yu J, Liu J, Liu Y, Yan C (2019) Identification of Cadmium-responsive Kandelia obovata SOD family genes and response to Cd toxicity. Env Exp Bot (In press)Google Scholar
  88. Pena LB, Barcia RA, Azpilicueta CE, Méndez AA, Gallego SM (2012) Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci 196:1–7PubMedCrossRefGoogle Scholar
  89. Peto A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pongrac P, Vogel-Mikus K, Vavpetic P, Tratnik J, Regvar M, Sincic J, Grlj N, Pelico P (2010) Cd induced redistribution of elements within leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Nucl Instrum Methods Phys Res B 268:2205–2210CrossRefGoogle Scholar
  91. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136PubMedGoogle Scholar
  92. Przymusinski R, Rucinska R, Gwozdz EA (2004) Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environ Exp Bot 52:53–61CrossRefGoogle Scholar
  93. Qiu YW, Yu KF, Zhang G, Wang WX (2011) Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island. China J Hazard Mat 190:631–638CrossRefGoogle Scholar
  94. Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828PubMedCrossRefGoogle Scholar
  95. Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65(1):77–84PubMedCrossRefGoogle Scholar
  96. Redondo-Go´mez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd hyperaccumulator Arthrocnemum macrostachyum. J Hazard Mater 184:299–307CrossRefGoogle Scholar
  97. Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  98. Ruiz-Mirazo J, Robles AB (2011) Short and medium term response of Atriplex halimus L. to repeated seasonal grazing in south-eastern Spain. J Arid Environ 75:586–595CrossRefGoogle Scholar
  99. Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71:255–259CrossRefGoogle Scholar
  100. Senock RS, Barrow JR, Gibbens RP, Herbel CH (1991) Ecophysiology of the polyploidy shrub Atriplex canescens (Chenopodiaceae) growing in situ in the northern Chihuahan desert. J Arid Environ 21:45–57CrossRefGoogle Scholar
  101. Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sghaier DB, Pedro S, Diniz MS, Duarte B, Caçador I, Sleimi N (2016) Tissue localization and distribution of As and Al in the halophyte Tamarix gallica under controlled conditions. Front Mar Sci 3:274CrossRefGoogle Scholar
  103. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144CrossRefGoogle Scholar
  104. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726PubMedCrossRefGoogle Scholar
  105. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50.  https://doi.org/10.1016/j.tplants.2008.10.007CrossRefPubMedGoogle Scholar
  106. Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VIV (2003a) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Rus J Plant Physiol 179:57–64Google Scholar
  107. Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VV (2003b) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 50:678–685CrossRefGoogle Scholar
  108. Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511PubMedCrossRefGoogle Scholar
  109. Singh NP, Santal AR (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation. Springer, Cham, pp 115–129Google Scholar
  110. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143.  https://doi.org/10.3389/fpls.2015.01143CrossRefPubMedPubMedCentralGoogle Scholar
  111. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447PubMedPubMedCentralCrossRefGoogle Scholar
  112. Smiri M, Chaoui A, Rouhier N, Gelhaye E, Jacquot JP, El Ferjani E (2011) Cadmium affects the glutathione/glutaredoxin system in germinating pea seeds. Biol Trace Elem Res 142(1):93–105PubMedCrossRefGoogle Scholar
  113. Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant and Soil 327:1–21CrossRefGoogle Scholar
  114. Sobrado MA, Greaves ED (2000) Leaf secretion composition of the mangrove species Avicennia germinans (L.) in relation to salinity: a case study by using total-reflection X-ray fluorescence analysis. Plant Sci 159:1–5PubMedCrossRefGoogle Scholar
  115. Song J, Wang BS (2015) Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot 115:541–553PubMedCrossRefGoogle Scholar
  116. Sousa AI, Cacador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 710:850–857CrossRefGoogle Scholar
  117. Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sun XH, Yu G, Li JT, Jia P, Zhang JC, Jia CG, Zhang YH, Pan HY (2014) A heavy metal-associated protein (AcHMA1) from the halophyte, Atriplex canescens (Pursh) Nutt., confers tolerance to iron and other abiotic stresses when expressed in Saccharomyces cerevisiae. Int J Mol Sci. 15(8):14891–906.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Szabados L, Kovacs H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150.Google Scholar
  120. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tate PT, Sik Shin W, Pardue JH, Jackson WA (2012) Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut 223:1115–1123CrossRefGoogle Scholar
  122. Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360–368CrossRefGoogle Scholar
  123. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165PubMedCrossRefGoogle Scholar
  124. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372PubMedCrossRefGoogle Scholar
  125. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655CrossRefGoogle Scholar
  126. Vogel-Mikus K, Simcic J, Pelicon P, Budnar M, Kump P, Necemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496PubMedCrossRefGoogle Scholar
  127. Vromman D, Flores-Bavestrello A, Šlejkovec Z, Lapaille S, Teixeira-Cardoso C, Briceño M, Kumar M, Martínez JP, Lutts S (2011) Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci Total Environ 412-413:286–295PubMedCrossRefGoogle Scholar
  128. Wali M, Kilani BR, Benet G, Abdelbasset L, Stanley L, Charlotte P, Chedly A, Tahar G (2014) How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere 117:243–250CrossRefGoogle Scholar
  129. Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563:796–802PubMedCrossRefGoogle Scholar
  130. Wang Y, Qiu Q, Xin G, Yang Z, Zheng J, Ye Z, Li S (2013) Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ Monit Assess 185:5775–5787PubMedCrossRefGoogle Scholar
  131. Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700PubMedCrossRefGoogle Scholar
  132. Wenzel WW, Bunkowski M, Puschenrerter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138PubMedCrossRefGoogle Scholar
  133. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta-Biomembranea 1465: 104–126.CrossRefGoogle Scholar
  134. Windham L, Weis J, Weis P (2001) Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes, Phragmites australis and Spartina alterniflora. Estuaries 24:787–795CrossRefGoogle Scholar
  135. Yuan F, Leng BY, Wang BS (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci 7:977PubMedPubMedCentralGoogle Scholar
  136. Zaier H, Tahar G, Lakhdar A, Baioui R, Ghabrichea R, Mnasri M, Sghair S, Lutts S, Abdellya C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615PubMedCrossRefGoogle Scholar
  137. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant and Soil 249:139–156CrossRefGoogle Scholar
  138. Zhang X, Uroic MK, Xie WY, Zhu YG, Chen BD, McGrath SP, Feldmann J, Zhao FJ (2012) Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environ Pollut 165:18–24PubMedCrossRefGoogle Scholar
  139. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. C. Nikalje
    • 1
  • N. Saini
    • 2
  • Penna Suprasanna
    • 3
  1. 1.Seva Sadan’s R. K. Talreja College of Arts, Science and CommerceUlhasnagar, ThaneIndia
  2. 2.Department of Plant Molecular Biology and BiotechnologyIndira Gandhi Krishi VishwavidyalayaRaipurIndia
  3. 3.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations