Heavy Metal Hyperaccumulator Plants: The Resource to Understand the Extreme Adaptations of Plants Towards Heavy Metals

  • Manoj Shrivastava
  • Ashish Khandelwal
  • Sudhakar Srivastava


Heavy metal contamination of soil and water is a widespread problem throughout the world. The concentration of heavy metal is extremely high at certain sites including mainly mining-impacted areas. Phytoremediation is a low-cost, plant-based approach for the effective, feasible and acceptable remediation of metal-contaminated sites. Among various potential metal accumulator plants, hyperaccumulator plants hold a specific recognition due to their ability to survive and grow at sites having exceptionally high metal concentrations and accumulate metals in very high amounts in their shoots beyond the maximum threshold levels. The hyperaccumulator plants can accumulate a metal up to about 1–2% of total dry weight. Due to their unique features, hyperaccumulator plants have been studied extensively to delineate physiological, biochemical and molecular mechanisms involved in the metal hyperaccumulation and tolerance. The comparative evaluation of hyperaccumulators with non-accumulator plants of the same genus has yielded valuable information about differential mechanisms of combating metals. Therefore, hyperaccumulator plants have served as resource materials in understanding the extreme adaptations of plants towards heavy metal stresses. The present chapter discusses the mechanisms of metal hyperaccumulation and tolerance.


Hyperaccumulators Metals Metallothioneins Phytochelatins Phytoremediation Transporters 


  1. Anonymous (1990) NEA dumps on science art. Science 250:1515Google Scholar
  2. Araceli PS, Millan R, Sierra MJ, Alarcon R, Garcia P, Gil-Diaz M, Vazquez S, Lobo MC (2012) Mercury uptake by Silene vulgaris grown on contaminated spiked soils. J Environ Manag 95:233–237CrossRefGoogle Scholar
  3. Arora S, Saradhi PP (1995) Light-induced enhancement in proline levels in Vigna radiata exposed to environmental stresses. Aust J Plant Physiol 22:383–386Google Scholar
  4. Assunção AGL, Da Costa Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226CrossRefGoogle Scholar
  5. Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  6. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111CrossRefGoogle Scholar
  7. Baker AJM (1989) Terrestrial higher plants that accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  8. Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1(2):81–126Google Scholar
  9. Baker AIM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68CrossRefGoogle Scholar
  10. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Botanica Serbica 34:3–14Google Scholar
  11. Barman SC, Kisku GC, Salve PR, Misra D, Sahu RK, Ramteke PW, Bhargava SK (2001) Assessment of industrial effluent and its impact on soil and plants. J Environ Biol 22:251–256PubMedGoogle Scholar
  12. Beath OA, Eppson HF, Gilbert CS (1937) Selenium distribution in and seasonal variation of type vegetation occurring on seleniferous soils. J Am Pharm Assoc 26(5):394–405Google Scholar
  13. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512PubMedCrossRefGoogle Scholar
  15. Bidwell SD, Crawford SA, Woodrow IE, Summer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716CrossRefGoogle Scholar
  16. Boyd RS, Martens SN (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70:21–25CrossRefGoogle Scholar
  17. Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265PubMedCrossRefPubMedCentralGoogle Scholar
  18. Boyd RS, Davis MA, Wall MA, Balkwill K (2002) Nickel defends the south African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12:91–97CrossRefGoogle Scholar
  19. Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C R Acad Sci III 322(1):43–54PubMedCrossRefPubMedCentralGoogle Scholar
  20. Briat JF, Lobreaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193CrossRefGoogle Scholar
  21. Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242CrossRefGoogle Scholar
  22. Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd, Mo, Ni, and Zn stress. New Phytol 129:404–409CrossRefGoogle Scholar
  23. Carvalho KM, Martin DF (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manag 39:33–36Google Scholar
  24. Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel (II), iron(III), cadmium(II) and plutonium (IV) in soybean xylem exudates. Plant Physiol 86:734–739PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PD, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76Google Scholar
  26. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediation of soil trace elements. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 311–352CrossRefGoogle Scholar
  28. Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160:283–290PubMedCrossRefGoogle Scholar
  29. Clarkson DT, Liittge U (1989) Divalent cations transport and compartmentation. Prog Bot 51:93–l 12Google Scholar
  30. Conesa HM, María-Cervantes A, Alvarez-Rogel J, González-Alcaraz MN (2011) Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement. Sci Total Environ 409(20):4470–4479PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. TIBECH 13:393–397Google Scholar
  33. del Rio LA, Sevilla F, Sandalio LM, Palma JM (1991) Nutritional effect and expression of SOD: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radic Res Commun 12–13:819–827Google Scholar
  34. Dietz KJ (1996) Functions and responses of the leaf apoplast under stress. Prog Bot 58:221–254Google Scholar
  35. Espinoza-Quinones FR, Zacarlein CE, Palacio SM, Obregon CL, Zenatti DC, Galante RM, Rossi N, Rossi FL, Pereira RA, Welter RA, Rizzulto MA (2005) Removal of heavy metals from polluted river using aquatic macrophytes Salvinia sp. Braz J Plant Physiol 35:744–746Google Scholar
  36. Farago ME, Mullen WA (1979) Plants which accumulate metals. IV. A possible copper–proline complex from the roots of Armeria maritime. Inorganica Chimica Acta 32:L93–L94CrossRefGoogle Scholar
  37. Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687CrossRefGoogle Scholar
  38. Furst P, Hu S, Hackett R, Hamer DH (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717PubMedCrossRefGoogle Scholar
  39. Grill E, Winnacker EL, Zenk MH (1991) Phytochelatins. Meth Enzymol 205:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  40. Grunwald C, Ehwald R, Pietzsch W, Corhing H (1979) A special role of rhizodermis in nutrient uptake by plant roots. Biochem Physiol Pflanz 174(9):831–837CrossRefGoogle Scholar
  41. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469CrossRefGoogle Scholar
  43. Harris T, Naidoo K, Nokes J, Walker T, Orton F (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17:194–200CrossRefGoogle Scholar
  44. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203PubMedCrossRefPubMedCentralGoogle Scholar
  45. Herbick A, Giritch A, Hortsmann C, Becker R, Balzer H, Baumlein H, Stephan UW (1996) Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol 111:533–540CrossRefGoogle Scholar
  46. Hocking PJ, Pate JS (1977) Mobilization of minerals to developing seeds of legumes. Ann Bot 41:1259–1278CrossRefGoogle Scholar
  47. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from new Caledonia. Science 193:579–580PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–343PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jin XF, Liu D, Islam E, Mahmood Q, Yang XE, He ZL, Stoffella PJ (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32(10):1642–1656CrossRefGoogle Scholar
  51. Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata – prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894Google Scholar
  52. Kanpfenkel K, Montagu MV, lnze D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol 107(3):725–735CrossRefGoogle Scholar
  53. Koornneeff M, Alonso-Blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phytol 137:l–8CrossRefGoogle Scholar
  54. Kramer U, Cotter-Howells JD, Baker AJM, Smith JAC (1996a) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  55. Kramer U, Cotter-Howells JD, Charnock JM, Baker A, Smith A (1996b) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  56. Küpper H, Kroneck PMH (2007) Nickel in the environment and its role in the metabolism of plants and cyanobacteria. In: Sigel A, Sigel H, RKO S (eds) Metal ions in life sciences, vol 2. Springer, Dordrecht, pp 31–62Google Scholar
  57. Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc copper toxicity and detoxification in Thlaspi caerulescens in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311PubMedCentralCrossRefPubMedGoogle Scholar
  58. Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300PubMedCrossRefGoogle Scholar
  59. Küpper H, Mijovilovich A, MeyerKlaucke W, Kroneck PMH (2004) Tissue- and agedependent differences in the complexation of cadmium and zinc in the Cd/Zn hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757PubMedPubMedCentralCrossRefGoogle Scholar
  60. Küpper H, Seib LO, Sivaguru M, Kochian LV (2007) A method for cellular localisation of gene expression via quantitative in situ hybridization in plants. Plant J 50:159–187PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883PubMedPubMedCentralCrossRefGoogle Scholar
  62. Levtt I (1980) Responses of plants to environmental stresses, vol 2, 2nd edn. Academic Press, New YorkGoogle Scholar
  63. Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  64. Liao MT, Hedley MJ, Woolley DJ, Brooks RR, Nichols MA (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil 223:243–252CrossRefGoogle Scholar
  65. Liu JN, Zhou QX, Sun T, Ma LQ, Wang S (2008) Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mater 151:261–267PubMedCrossRefPubMedCentralGoogle Scholar
  66. Liu J, Shang W, Zhang X, Zhu Y, Yu K (2014) Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn hyperaccumulating plant species. J Hazard Mater 267:136–141PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lu YP, Li ZS, Rea PA (1994) AtMRP I gene of Arabidopsis encodes a glutathione:j-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci 94:8243–8248CrossRefGoogle Scholar
  68. Lu YP, Li ZS, Drozdowicz YM, Hortensteiner S, Martinoia E, Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP 7. Plant Cell 10:267–282PubMedPubMedCentralGoogle Scholar
  69. Luis R, Lopez-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresenius Environ Bull 12:967–971Google Scholar
  70. Lutts S, Lefevre I, Delperee C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33(4):1271–1279PubMedCrossRefPubMedCentralGoogle Scholar
  71. Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559CrossRefGoogle Scholar
  72. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  73. Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384PubMedCrossRefPubMedCentralGoogle Scholar
  74. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrheim N (1993) ATP dependent glutathione S conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249CrossRefGoogle Scholar
  75. Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperm. Physiologica Plantarum 88:191–l 98CrossRefGoogle Scholar
  76. Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Götz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mikus M, Bobak M, Lux A (1991) Structure of protein bodies and elemental composition of phytin from dry germ of maize (Zea mays L). Botanica Acta 105:26–33CrossRefGoogle Scholar
  78. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora-Morphol Distrib Funct Ecol Plants 204(4):316–324CrossRefGoogle Scholar
  79. Nies DH (1992) Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27:1728CrossRefGoogle Scholar
  80. Otte ML, Haarsma MS, Broekman RA, Rozema J (1993) Relation between heavy metal concentrations in salt marsh plants and soil. Environ Pollut 82:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  81. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823PubMedPubMedCentralCrossRefGoogle Scholar
  82. Parameswaran A, Leitenmaier B, Yang M, Welte W, Kroneck PMH, Lutz G, Papoyan A, Kochian LV, Küpper H (2007) A native Zn/Cd transporting P1B type ATPase protein from natural overexpression in a Zn/Cd hyperaccumulator plant. Biochem Biophys Res Commun 364:51–56CrossRefGoogle Scholar
  83. Paz-Alberto AM, Sigua GC, Baui BG, Prudente JA (2007) Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.). Environ Sci Pollut Res Int 14(7):498–504PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960PubMedPubMedCentralCrossRefGoogle Scholar
  85. Persans MW, Yan X, Patnoe JM, Kramer U, Salt DE (1999) Molecular dissection of the role of histidine in Ni hyperaccumulation in Thlaspi goesingense. Plant Physiol 121:1117–1126PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47(1):41–47CrossRefGoogle Scholar
  87. Pich A, Scholz G, Stephan UW (1994) Iron dependant changes of heavy metals, nicotianamine and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 165(2):189–l 96CrossRefGoogle Scholar
  88. Pich A, Hillmer S, Manteuffel R, Scholz G (1997) First immunohistochemical localization of the endogenous Fe2+-chelator nicotianamine. J Exp Bot 48(3):759–767CrossRefGoogle Scholar
  89. Raskin II, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–l 149PubMedPubMedCentralCrossRefGoogle Scholar
  92. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO science series, vol 68. Springer, Netherlands, pp 25–52CrossRefGoogle Scholar
  93. Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of Ni and Zn. J Geochem Explor 18:275–283CrossRefGoogle Scholar
  94. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411PubMedCrossRefPubMedCentralGoogle Scholar
  95. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:l–10CrossRefGoogle Scholar
  96. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60(2):115–126CrossRefGoogle Scholar
  97. Sagner S, Kneer R, Wanner C, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complex & ion and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean Soil, Air, Water 39:735–741CrossRefGoogle Scholar
  99. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–l433PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRefGoogle Scholar
  101. Savtno G, Briat JF, Lobreaux S (1997) Inhibition of the iron-induced ZmFerl maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem 272:33319–33326CrossRefGoogle Scholar
  102. Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482CrossRefGoogle Scholar
  103. Schmidke I, Stephan UW (1995) Transport of metal micronutrients in the phloem of castor bean (Ricinus communis) seedlings. Physiol Plant 95:1477153CrossRefGoogle Scholar
  104. Senden MHMH, Van Paassen FJM, Van Der Mer AGM, Wolterbeek H (1992) Cadmium-citric acid-xylem cell wall interactions in tomato plants. Plant Cell Environ 15:71–79CrossRefGoogle Scholar
  105. Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906CrossRefGoogle Scholar
  106. Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores. In vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503PubMedPubMedCentralCrossRefGoogle Scholar
  107. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412PubMedCrossRefGoogle Scholar
  108. Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environ Monit Assess 80(1):17–31PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sivaci A, Elmas E, Gumuş F, Sivaci ER (2008) Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54(4):612–618PubMedCrossRefPubMedCentralGoogle Scholar
  110. Song WY, Mendoza-Cózatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS et al (2014) Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201PubMedCrossRefPubMedCentralGoogle Scholar
  111. Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31PubMedCrossRefPubMedCentralGoogle Scholar
  112. Srivastava S, Shrivastava M, Suprasanna P, D’souza SF (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37(11):1937–1941CrossRefGoogle Scholar
  113. Stephan UW, Scholz C (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529CrossRefGoogle Scholar
  114. Stephan UW, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165(2):181–l 88CrossRefGoogle Scholar
  115. Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90CrossRefGoogle Scholar
  116. Sun R, Jin C, Zhou Q (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell. a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61:67–74CrossRefGoogle Scholar
  117. Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11:383–394CrossRefGoogle Scholar
  118. Treeby M, Marschner H, Romheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic chelators. Plant Soil 114:217–226CrossRefGoogle Scholar
  119. Van Cutsem P, Cillet C (1982) Activity coefficient and selectivity values of Cu2+, Zn2+ and Ca2+ ions absorbed in the Nitella flexilis L. cell wall during triangular ion exchanges. J Exp Bot 33(5):847–854CrossRefGoogle Scholar
  120. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  121. van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147PubMedPubMedCentralCrossRefGoogle Scholar
  122. van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281Google Scholar
  123. Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093PubMedPubMedCentralCrossRefGoogle Scholar
  124. von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII: implications for metal transport in plants. Plant Physiol 119:1107–1114CrossRefGoogle Scholar
  125. Wang J, Evangelou BP, Nielsen MT (1992) Surface chemical properties of purified root cell walls from two tobacco genotypes exhibiting different tolerance to manganese toxicity. Plant Physiol 100:496–501PubMedPubMedCentralCrossRefGoogle Scholar
  126. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  127. Welch RM, Norveil WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (Ill) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe(lll)-chelate reductase perform a general role in regulating cation uptake. Planta 190:555–561CrossRefGoogle Scholar
  128. Weng XY, Zhao LL, Zheng CJ, Zhu JW (2013) Characteristics of the hyperaccumulator plant Phytolacca acinosa (phytolaccaceae) in response to excess manganese. J Plant Nutr 36:1355–1365CrossRefGoogle Scholar
  129. Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246Google Scholar
  130. Wu M, Luo Q, Zhao Y, Long Y, Liu S, Pan Y (2017) Physiological and biochemical mechanisms preventing cd toxicity in the new hyperaccumulator Abelmoschus manihot. J Plant Growth Regul 37:709–718CrossRefGoogle Scholar
  131. Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y (2018) Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol Environ Saf 162:35–41PubMedCrossRefGoogle Scholar
  132. Wycisk K, Kim EJ, Schroeder JI, Kramer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128–134PubMedCrossRefGoogle Scholar
  133. Xian X, Shokohifard G (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc and lead in polluted soils. Water Air Soil Pollut 45:265–273CrossRefGoogle Scholar
  134. Zenk MH (1996) Heavy metal detoxification in higher plants – a review. Gene 179:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  135. Zhang S, Chen M, Li T, Xu X, Deng L (2010) A newly found cadmium accumulator-Malva sinensis Cavan. J Hazard Mater 173:705–709PubMedCrossRefGoogle Scholar
  136. Zhang X, Xia H, Li Z, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6(6):875–884PubMedPubMedCentralGoogle Scholar
  138. Zhou I, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genomics 248:318–328CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manoj Shrivastava
    • 1
  • Ashish Khandelwal
    • 1
  • Sudhakar Srivastava
    • 2
  1. 1.Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations