In Planta Synthesis of Nanomaterials for Environmental Remediation

  • Reshma V. Patil
  • Kiran D. Pawar


In recent years, the convergence between biology and nanotechnology has created the new field of “nanobiotechnology” that incorporates the use of biological entities such as bacteria, fungi, and plants in a number of processes for nanomaterial synthesis. Synthesis of nanoparticles using biological means, especially plants, is biocompatible as they produce functional biomolecules which actively reduce metal ions into nanoparticles. Moreover, plants as a biological agent are eco-friendly, and the plant-mediated biogenic reaction of nanoparticle synthesis usually involves organic compounds like flavonoids, alkaloids, terpenoids, polyphenols, etc. These phytochemicals act as reducing and capping agents and react with metal ions to create a metal nanoparticle. The plants and their extracts have been used successfully in the synthesis of various nanoparticles such as Ag, Au, Co, Cu, Pd, Pt, ZnO, and Fe2O3. Besides numerous applications of biogenic nanoparticles, they can also be used for remediation of soil and water contaminated with heavy metals and organic and inorganic pollutants. The present chapter gives a brief account of plant-mediated biogenic synthesis of nanoparticles, plant metabolites involved, the mechanism of nanoparticle synthesis, and applications of biogenic nanoparticles in environmental cleanup and remediation.


Biological entities Biogenic nanoparticles Plant metabolites Environmental remediation 


  1. Aasaithambi K, Selvaraj MR, Gunabalan M, Ramalingam C, Naif AA, Mariadhas VA (2016) Catharanthus roseus-mediated zinc oxide nanoparticles against photocatalytic application of phenol red under UV@ 365 nm. Curr Sci 111:10Google Scholar
  2. Abbasi M, Saeed F, Rafique U (2014) Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs. Mater Sci Eng 60:012061Google Scholar
  3. Abdul H, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-lamiaceae leaf extract. Mater Lett 131:16–18CrossRefGoogle Scholar
  4. Ahmad N, Sharma S, Alam MK, Singh V, Shamsi SF, Mehta B, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86PubMedCrossRefGoogle Scholar
  5. Ahmad N, Sharma S, Rai R (2012) Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv Mat Lett 3:376–380CrossRefGoogle Scholar
  6. Ai J, Biazar E, Jafarpour M et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 6:1117–1127PubMedPubMedCentralGoogle Scholar
  7. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602CrossRefGoogle Scholar
  8. Akl MA, Nida MS (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. J Nanosci Nanotechnol 2:125–128CrossRefGoogle Scholar
  9. Akl MA, Nida MS, Amany OA (2013) Biosynthesis of silver nanoparticles using loquat leaf extract and its antibacterial activity. Adv Mat Lett 4:338–342CrossRefGoogle Scholar
  10. Aladpoosh R, Montazer M (2015) The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features. Carbohydr Polym 126:122PubMedCrossRefGoogle Scholar
  11. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  12. Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 13:9923–9941PubMedPubMedCentralCrossRefGoogle Scholar
  13. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A Mol Biomol Spectrosc 143:304–330PubMedCrossRefGoogle Scholar
  14. Andeani J, Mohsenzadeh S (2012) Phytosynthesis of cadmium oxide nanoparticles from Achillea wilhelmsii flowers. J Chem 4:1–4CrossRefGoogle Scholar
  15. Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia Catappa. E-J Chem 7:1334–1339CrossRefGoogle Scholar
  16. Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta Part A 85:99–104CrossRefGoogle Scholar
  17. Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine 8:1307–1315PubMedPubMedCentralCrossRefGoogle Scholar
  18. Azizi S, Ahmad MB, Namvar F, Mohamad R (2013) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  19. Badole MR, Dighe VV (2012) Synthesis of gold nanoparticles using Putranjiva roxburghii wall. leaves extract. Int J Drug Discovery Herbal Res 2:275–278Google Scholar
  20. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater Lett 64:1951–1953CrossRefGoogle Scholar
  21. Bhuyan K, Mishra M, Khanuja R, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  22. Birnbaum AJ, Piqú A (2011) Laser induced extraplanar propulsion for three-dimensional microfabrication. Appl Phys Lett 50:1–4Google Scholar
  23. Brajesh K, Kumari S, Luis C, Alexis D (2014) Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl 2014:7Google Scholar
  24. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog in Solid State Chem 32:33–117CrossRefGoogle Scholar
  25. Castro L, Blazquez ML, Munoz JA, Gonzalez F, GarciaBalboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46:1076–1082CrossRefGoogle Scholar
  26. Chan YS, MatDon M (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33:282–288CrossRefGoogle Scholar
  27. Chauhan S, Upadhyay MK, Rishi N, Rishi S (2011) Phytofabrication of silver nanoparticles using pomegranate fruit seeds. Int J Nano Biomater 1:17–21Google Scholar
  28. Cheng F, Betts JW, Kelly SM, Schaller J, Heinze T (2013) Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using amino cellulose as a combined reducing and capping reagent. Green Chem 15:989–998CrossRefGoogle Scholar
  29. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027PubMedCrossRefPubMedCentralGoogle Scholar
  30. Coccia F, Tonucci L, Bosco D, Bressan M, d’Alessandro N (2012) One pot synthesis of lignin-stabilized platinum and palladium nanoparticles and their catalytic behaviours in oxidation and reduction reactions. Green Chem 14:1073–1078CrossRefGoogle Scholar
  31. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18CrossRefGoogle Scholar
  33. Dauthal P, Mukhopadhyay M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-Nitrophenol reduction. Ind Eng Chem Res 51:13014–13020CrossRefGoogle Scholar
  34. Dobrucka K, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523PubMedCrossRefPubMedCentralGoogle Scholar
  35. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf digest. Dig J Nanomater Biostruct 4:537–543Google Scholar
  37. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1107CrossRefGoogle Scholar
  38. Edison TNJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357CrossRefGoogle Scholar
  39. Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomed 6:1265–1278CrossRefGoogle Scholar
  40. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015a) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 143:158–164PubMedCrossRefPubMedCentralGoogle Scholar
  41. Elumalai K, Velmurugan S, Ravi S, Raj A (2015b) Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 32:1639–1651CrossRefGoogle Scholar
  42. Fan FR, Bard AJ (1979) Spectral Sensitization of the Heterogeneous Photocatalytic Oxidation of Hydroquinone in Aqueous Solutions at Phthalocyanine-Coated TiO2 Powders. J Am Chem Soc 101:6139–6140CrossRefGoogle Scholar
  43. Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ (2016) A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 15:11–23Google Scholar
  44. Gebru H, Taddesse A, Kaushal J, Yadav O (2013) Green synthesis of silver nanoparticles and their antibacterial activity. J Surf Sci Technol 29:47–66Google Scholar
  45. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483–496Google Scholar
  46. Glusker JP, Katz MYK, Bock CW (1999) Metal ions in biological systems. Rigaku J 16:8–17Google Scholar
  47. Haverkamp R, Marshall A (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1464CrossRefGoogle Scholar
  48. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRefGoogle Scholar
  49. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120PubMedCrossRefPubMedCentralGoogle Scholar
  50. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–104Google Scholar
  51. Huang X, Wu H, Liao X, Shi B (2010) One-step, size-controlled synthesis of gold nanoparticles at RT using plant tannin. Green Chem 12:395–399CrossRefGoogle Scholar
  52. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804PubMedCrossRefPubMedCentralGoogle Scholar
  53. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006PubMedCrossRefPubMedCentralGoogle Scholar
  54. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  55. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B 73:219–223CrossRefGoogle Scholar
  56. Kanchi S, Kumar G, Lo A, Tseng CM, Chen SK, Lin CY, Chin TS (2014) Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem: 10. 11:247–255CrossRefGoogle Scholar
  57. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  58. Konwarh R, Gogoi B, Philip R, Laskar MA, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B 84:338–345CrossRefGoogle Scholar
  59. Krishnamurthy S, Sathishkumar M, Lee SY, Bae MA, Yun YS (2011) Biosynthesis of Au nanoparticles using cumin seed powder extract. J Nanosci Nanotechnol 11:1811–1814CrossRefGoogle Scholar
  60. Krupa D, Vimala R (2016) Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C 61:728–735CrossRefGoogle Scholar
  61. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  62. Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447CrossRefGoogle Scholar
  63. Lopez-Tellez G, Balderas-Hernandez P, Barrera-Dıaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. J Nanosci Nanotechnol 13:2354–2361PubMedCrossRefGoogle Scholar
  64. Madhavi V, Prasad TN, Reddy AV, Reddy BR, Madhavi G (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A Mol Biomol Spectrosc 116:17–25PubMedCrossRefGoogle Scholar
  65. Malabadi RB, Meti NT, Mulgund GS, Nataraja K, Vijaya S (2012) Synthesis of silver nanoparticles from in vitro derived plants and callus cultures of Costus speciosus (Koen) assessment of antibacterial activity. Res Plant Biol 2:32–42Google Scholar
  66. Mazumdar H, Ahmed GU (2011) Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata and Brassica campestris. Int J Adv Biotechnol Res 2:404–413Google Scholar
  67. Mehr ES, Sorbiun M, Ramazani A, Fardood ST (2017) Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using Ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron 82:1–8Google Scholar
  68. Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mishra AN, Bhadauria S, Gaur MS, Pasricha R, Kushwah BS (2010) Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol Phys Chem 1:118–124CrossRefGoogle Scholar
  70. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefGoogle Scholar
  71. Mittal AK, Bhaumik J, Kumar S, Banerjee UC (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47PubMedCrossRefGoogle Scholar
  72. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  73. Mohsen MS, Ammar ASM (2009) Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chem 112:595–598CrossRefGoogle Scholar
  74. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138PubMedCrossRefGoogle Scholar
  75. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B: Biointerfaces 85:360–365PubMedCrossRefGoogle Scholar
  76. Nalwa HS (2005) Encyclopedia of nanoscience & nanotechnology. American Scientific Publishers, Stevenson RanchGoogle Scholar
  77. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  78. Nellore J, Pauline PC, Amarnath K (2012) Biogenic synthesis of Sphearanthus amaranthoids towards the efficient production of the biocompatible gold nanoparticles. Dig J Nanomater Biostruct 7:123–133Google Scholar
  79. Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5:120–125PubMedCrossRefGoogle Scholar
  80. Njagi EC, Huang H, Stafford L et al (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271PubMedCrossRefGoogle Scholar
  81. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230PubMedCrossRefGoogle Scholar
  82. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater (Weinheim, Ger) 23:2779–2795CrossRefGoogle Scholar
  83. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis of metal nanoparticles. J Nanoparticle res 6:411–414CrossRefGoogle Scholar
  84. Parida UK, Bindhani BK, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 01:93–98CrossRefGoogle Scholar
  85. Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochem Acta A 91:234–238CrossRefGoogle Scholar
  86. Peroza EA, Dos SCA, Wan X, Freisinger E (2013) Metal ion release from metallothioneins: proteolysis as an alternative to oxidation. Metallomics 5:1204–1214PubMedCrossRefGoogle Scholar
  87. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 03:14–19CrossRefGoogle Scholar
  88. Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta Part A 78:899–904CrossRefGoogle Scholar
  89. Phillip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A 77:807–810CrossRefGoogle Scholar
  90. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042PubMedCrossRefGoogle Scholar
  91. Poinern GEJ, Chapman P, Le X, Fawcett D (2013) Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bull 46:165–173CrossRefGoogle Scholar
  92. Pouretedal HR, Norozi A, Keshavarz MH, Semnani A (2009) Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J Hazard Mater 162:674–681PubMedCrossRefGoogle Scholar
  93. Powell RG, Smith CR (1981) An investigation of the antitumor activity of Sesbania drummondii. J Nat Prod 44:86–90PubMedCrossRefGoogle Scholar
  94. Prakash NKU, Bhuvaneshwari S, Balamurugan A, Radhika B, Bhagya R, Sripriya N, Prameela L, Chandran M, Arokiyaraj S (2013) Studies on phytochemistry of 100 plants in Chennai. Br J Pharm Res 3:417–419CrossRefGoogle Scholar
  95. Qian Y, Yao J, Russel M, Chen K, Wang X (2015) Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol 39:736–746PubMedCrossRefGoogle Scholar
  96. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular antiamlignant guava (Psidium guajava) leaf extract. NanoBiotechnology 5:34–41CrossRefGoogle Scholar
  97. Rai M, Yadav A (2013) Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol 7:117–124PubMedCrossRefGoogle Scholar
  98. Rajasree SRR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:795–799CrossRefGoogle Scholar
  99. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870PubMedCrossRefGoogle Scholar
  100. Ramezani N, Ehsanfar Z, Shamsa F, Amin G, Shahverdi HR, Esfahani HRM, Shamsaie A, Bazaz RD, Shahverdi AR (2008) Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Z Naturforsch 63:903–990CrossRefGoogle Scholar
  101. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Purif Technol 58:224–231CrossRefGoogle Scholar
  102. Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73PubMedCrossRefGoogle Scholar
  103. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. Am Chem Soc 125:13940–13941CrossRefGoogle Scholar
  104. Rizwan M, Singh M, Chanchal KM, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanopart 2014:7CrossRefGoogle Scholar
  105. Roy B, Mukherjee S, Mukherjee N, Chowdhury P, Sinha Babu SP (2014) Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv 4:34487–34499CrossRefGoogle Scholar
  106. Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Materials Science-Poland, 26:419–424Google Scholar
  107. Safaepour M, Shahverdi AR, Shahverdi HR, Khorramizadeh MR, Gohari AR (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma–Wehi 164. Avicenna J Med Biotechnol 1:111–115PubMedPubMedCentralGoogle Scholar
  108. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893PubMedCrossRefGoogle Scholar
  109. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680PubMedCrossRefGoogle Scholar
  110. Sankar R, Manikandan P, Malarvizhi V, Vilwanathan R (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 121:746–750CrossRefGoogle Scholar
  111. Satapathy MK, Banerjee P, Das P (2015) Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent. Appl Nanosci 5:1–9CrossRefGoogle Scholar
  112. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009a) Phyto-crystallization of palladium through reduction process using Cinnamon zeylanicum bark extract. J Hazard Mater 171:404–404CrossRefGoogle Scholar
  113. Sathishkumar K, Sneha SW, Cho CW, Kim S, Yun YS (2009b) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73:332–338PubMedCrossRefGoogle Scholar
  114. Sathishkumar M, Sneha K, Yun YS (2009c) Palladium nanocrystals synthesis using Curcuma longa tuber extract. Int J Mater Sci 4:11–17Google Scholar
  115. Satyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in non-linear optics. Adv Sci Lett 3:1–6CrossRefGoogle Scholar
  116. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH dependent reducing agent and assembling phase-transferred silver nanoparticles at the air−water interface. Langmuir 20:7825–7836PubMedCrossRefGoogle Scholar
  117. Shadakshari S, Arehalli SS, Ningappa KS, Suresh GS, Jose SM, Puttaswamappa M (2016) Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Adv Mater Lett 6:383–389Google Scholar
  118. Shahwan T, Abu Sirriah S, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  119. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core−Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502PubMedCrossRefGoogle Scholar
  120. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5514PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem (In press).
  122. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807CrossRefGoogle Scholar
  123. Singh AK, Talat M, Singh DP (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12:1667–1675CrossRefGoogle Scholar
  124. Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta Part A 74:735–739CrossRefGoogle Scholar
  125. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kokus and Diospyros kaki leaf extracts. Process Biochem 44:1133–1138CrossRefGoogle Scholar
  126. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164PubMedCrossRefGoogle Scholar
  127. Stephen JR, Macnaughton SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10:230–233PubMedCrossRefGoogle Scholar
  128. Suganya R, Priya K, Sumi Roxy B (2013) Phytochemical screening and antibacterial activity from Nerium oleander and evaluate their plant mediated nanoparticle synthesis. IRJP 3:285–288Google Scholar
  129. Suman S, Kumar N, Kumar MJ, Agarwal A, Mizaikoff B (2017) Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem Eng J 313:283–292CrossRefGoogle Scholar
  130. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu CP (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp 444:226–231CrossRefGoogle Scholar
  131. Sundaramurthy N, Parthiban C (2015) Biosynthesis of copper oxide nanoparticles using Pyrus pyrifolia leaf extract and evolve the catalytic activity. Int Res J Eng Technol 2:332–338Google Scholar
  132. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26:1294–1299CrossRefGoogle Scholar
  133. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  134. Tafesh AM, Weiguny J (1996) A review of the selective reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates and ureas using CO. Chem Rev 96:2035–2052PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tamuly C, Hazarika M, Bordoloi M, Bhattacharyya PK, Kar R (2014) Biosynthesis of Ag nanoparticles using pedicellamide and its photocatalytic activity: an eco-friendly approach. Spectrochim Acta A Mol Biomol Spectrosc 132:687–691PubMedCrossRefPubMedCentralGoogle Scholar
  136. Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal, nanoparticles. J Am Chem Soc 132:5677–5686PubMedCrossRefPubMedCentralGoogle Scholar
  137. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262CrossRefGoogle Scholar
  138. Thakur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater Chem Phys 144:425–432CrossRefGoogle Scholar
  139. Thirumurugan A, Jiflin GJ, Rajagomathi G, Tomy NA, Ramachandran S, Jaiganesh R (2010) Biotechnological synthesis of gold nanoparticles of Azadirachta indica leaf extract. Int J Biol Technol 1:75–77Google Scholar
  140. Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223CrossRefGoogle Scholar
  141. Vanathi P, Rajiv P, Narendhran S, Rajeshwari S, Rahman PKSM (2014) Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater Lett 134:13–15CrossRefGoogle Scholar
  142. Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102PubMedPubMedCentralCrossRefGoogle Scholar
  143. Vijayaraghavan K, Nalini SP (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5:1098–1110PubMedCrossRefGoogle Scholar
  144. Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain Chem Eng 1:1551–1554CrossRefGoogle Scholar
  145. Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S (2007) One step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A 301:73–79CrossRefGoogle Scholar
  146. Willett RL, Baldwin KW, West KW, Pfeiffer L (2005) Differential adhesion of amino acids to inorganic surfaces. Proc Natl Acad Sci 102:7817–7822PubMedCrossRefGoogle Scholar
  147. Yadav KK, Singh JK, Gupta N, Kumar V (2017) A Review of Nanobioremediation Technologies for Environmental Cleanup: A Novel Biological Approach. Journal of Materials and Environmental Sciences 8:740–757Google Scholar
  148. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598CrossRefGoogle Scholar
  149. Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan M, Rahuman AA, Singh N (2012) Synthesis of nanoparticles using Euphorbia prostrata extract reveals a shift from apoptosis to G0/G1 arrest in Leishmania donovani. J Nanomed Nanotechnol 5:213Google Scholar
  150. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules 16:6667–6676PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zelmanov G, Semiat R (2008) Iron oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res 42:492–498PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhang Y, Cheng X, Zhang Y, Xue X, Fu Y (2013) Biosynthesis of silver nanoparticles at room, temperature using aqueous aloe leaf extract and antibacterial properties. Colloids Surf A Physicochem Eng Asp 423:63–68CrossRefGoogle Scholar
  153. Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin YGL, Li Q, Lin L, Du M (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5:1351–1359PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Reshma V. Patil
    • 1
  • Kiran D. Pawar
    • 1
  1. 1.School of Nanoscience and Biotechnology, Shivaji UniversityKolhapurIndia

Personalised recommendations