Advertisement

Agroecotoxicological Aspect of Arsenic (As) and Cadmium (Cd) on Field Crops and its Mitigation: Current Status and Future Prospect

  • Debojyoti Moulick
  • Bhaben Chowardhara
  • Sanjib Kumar Panda
Chapter

Abstract

The level of heavy metals has increased in the environment due to anthropogenic activities. Arsenic and cadmium are two nonessential heavy metals that are reported to have crossed permissible limits in the soil and water of many regions worldwide. Both heavy metals severely hamper plant growth and development. Arsenic and cadmium when taken up by plants are responsible for overproduction of Reactive Oxygen Species (ROS), which is quite lethal. Plants have their own enzymatic and non-enzymatic mechanisms to reduce the production of ROS but when oxidative stress exceeds the limit, plants succumb. The focus of this chapter is to present an overview of many ameliorating agents that have been used in both laboratory and field conditions to minimize accumulation and toxicity in crop plants caused by these heavy metals.

Keywords

Arsenic Cadmium ROS Oxidative stress Growth promoting rhizobacteria 

References

  1. Adams ML, Zhao FJ, McGrath SP, Nicholson FA, Chambers BJ (2004) Predicting cadmium concentrations in wheat and barley grain using soil properties. J Environ Qual 33(2):532–541PubMedCrossRefGoogle Scholar
  2. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad M (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197PubMedCrossRefGoogle Scholar
  3. Ahmad P, Allah EA, Hashem A, Sarwat M, Gucel S (2016) Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L.(Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul 35:936–950CrossRefGoogle Scholar
  4. Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338(1):367–382CrossRefGoogle Scholar
  5. Ali B, Tao Q, Zhou Y, Gill RA, Ali S, Rafiq MT, Xu L, Zhou W (2013) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Saf 92:271–280PubMedCrossRefGoogle Scholar
  6. Amini M, Khademi H, Afyuni M, Abbaspour KC (2005) Variability of available cadmium in relation to soil properties and landuse in an arid region in central Iran. Water Air Soil Pollut 162(1–4):205–218CrossRefGoogle Scholar
  7. Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bao T, Sun LN, Sun TH (2010) Evaluation of iron on cadmium uptake by tomato, morel and leaf red beet in hydroponic culture. J Plant Nutr 33:713–723CrossRefGoogle Scholar
  9. Barančíková G, Madams M, Rybàr O (2010) Crop contamination by selected trace elements. J Soils Sediments 4(1):37–42CrossRefGoogle Scholar
  10. Barla A, Shrivastava A, Majumdar A et al (2017) Heavy metal dispersion in water saturated and water unsaturated soil of Bengal delta region, India. Chemosphere 168:807–816PubMedCrossRefPubMedCentralGoogle Scholar
  11. Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil. J Environ Qual 34(1):49–63PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bertoli AC, Cannata MG, Carvalho R, Bastos AR, Freitas MP, dos Santos Augusto A (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotoxicol Environ Saf 86:176–181CrossRefGoogle Scholar
  13. Beyer WN, Cromartie EJ (1987) A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites. Environ Monit Assess 8(1):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Clean Soil Air Water 31(1):9–18Google Scholar
  15. Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67CrossRefGoogle Scholar
  16. Bligh R (2012) Arsenic: sources, pathways, and treatment of mining and metallurgical effluents. Outotec, pp 8–10Google Scholar
  17. Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bostick B, Fendorf S, Brown G (2005) In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineral Mag 69(5):781–795CrossRefGoogle Scholar
  19. Brennan RF, Bolland MD (2014) Cadmium concentration in yellow lupin grain is decreased by zinc applications to soil but is increased by phosphorus applications to soil. J Plant Nutr 37:850–868CrossRefGoogle Scholar
  20. Brown TJ, Idoine NE, Raycraft ER, Shaw RA, Deady EA, Hobbs SF, Bide T (2017) World mineral production 2011–15. British Geological SurveyGoogle Scholar
  21. Burton ED, Johnston SG, Kocar BD (2014) Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ Sci Technol 48(23):13660–13667PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cambier S, Gonzalez P, Durrieu G, Bourdineaud JP (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126(2):157–167PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carbonell-Barrachina ÁA, Wu X, Ramírez-Gandolfo A, Norton GJ, Burló F, Deacon C, Meharg AA (2012) Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environ Pollut 163:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carvalho LM, Caçador I, Martins-Loução MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169CrossRefGoogle Scholar
  26. Chaney RL, Oliver DP (1996) Sources, potential adverse effects and remediation of agricultural soil contaminants. In: Contaminants and the soil environment in the Australasia-Pacific region. Springer, Dordrecht, pp 323–359CrossRefGoogle Scholar
  27. Chaoui A, Ghorbal MH, El Ferjani E (1997) Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci 126:21–28CrossRefGoogle Scholar
  28. Chen F, Wang F, Zhang G, Wu F (2008) Identification of barley varieties tolerant to cadmium toxicity. Biol Trace Elem Res 121(2):171–179PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89(10):1248–1254PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chen Z, Wang Y, Xia D, Jiang X, Fu D, Shen L, Wang H, Li QB (2016) Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J Hazard Mater 311:20–29PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen D, Chen D, Xue R, Long J, Lin X, Lin Y, Jia L, Zeng R, Song Y (2019) Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J Hazard Mater 367:447–455PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chung JY, Yu SD, Hong YS (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47(5):253PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cui J, Liu T, Li Y, Li F (2018) Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. Sci Total Environ 644:602–610PubMedCrossRefPubMedCentralGoogle Scholar
  35. Daud MK, Sun Y, Dawood M, Hayat Y, Variath MT, Wu YX, Mishkat U, Najeeb U, Zhu S (2009) Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J Hazard Mater 161:463–473PubMedCrossRefPubMedCentralGoogle Scholar
  36. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 1196(3):752–762CrossRefGoogle Scholar
  37. Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251PubMedCrossRefPubMedCentralGoogle Scholar
  38. Domínguez MT, Marañón T, Murillo JM, Redondo-Gómez S (2011) Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere 83:1166–1174PubMedCrossRefPubMedCentralGoogle Scholar
  39. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci 97:6287–6291PubMedCrossRefPubMedCentralGoogle Scholar
  40. Duan GL, Hu Y, Liu WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421Google Scholar
  41. Duxbury JM, Panaullah G (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh (Working paper). Cornell University and Bangladesh joint publication, FAOWater, FAO, RomeGoogle Scholar
  42. Edelstein DL (1985) Arsenic. In: Hodel DP, Horton RC (eds) Mineral facts and problems, 1985 edn. U.S. Department of the Interior, U.S. Bureau of Mines, Washington, DC, pp 43–52Google Scholar
  43. El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  44. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155(2):155–160CrossRefGoogle Scholar
  45. Fahad S, Hussain S, Saud S, Hassan S, Shan D, Chen Y, Deng N, Khan F, Wu C, Wu W, Shah F (2015) Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. Clean Soil Air Water 43:1433–1440CrossRefGoogle Scholar
  46. Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68CrossRefGoogle Scholar
  47. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530CrossRefGoogle Scholar
  48. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68CrossRefGoogle Scholar
  49. Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244:555–562PubMedCrossRefPubMedCentralGoogle Scholar
  50. Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fisher JC, Wallschläger D, Planer-Friedrich B, Hollibaugh JH (2008) A new role for sulfur inarsenic cycling. Environ Sci Technol 42:81–85PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794Google Scholar
  53. Focazio MJ, Welch AH, Watkins SA, Helsel DR, Horn MA (2000) A retrospective analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations. Water-resources investigations Report 99:4279Google Scholar
  54. Fu Y, Chen M, Bi X, He Y, Ren L, Xiang W, Qiao S, Yan S, Li Z, Ma Z (2011) Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environ Pollut 159(7):1757–1762PubMedCrossRefGoogle Scholar
  55. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371CrossRefGoogle Scholar
  56. Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR (2013) A population-based case–control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121(10):1154–1160PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160(4):367–376PubMedCrossRefGoogle Scholar
  58. Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier, Dec 2Google Scholar
  59. Grund S, Hanusch K, Wolf H (2012) Arsenic and arsenic compounds. In: Library WO (ed) Ullmann’s encyclopedia of industrial chemistry: metals and alloys. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  60. Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214CrossRefGoogle Scholar
  61. Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30:780–787CrossRefGoogle Scholar
  62. Hassan W, Bano R, Bashir S, Aslam Z (2016) Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Res 54:460–468CrossRefGoogle Scholar
  63. Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18CrossRefGoogle Scholar
  64. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140PubMedCrossRefGoogle Scholar
  65. He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348PubMedCrossRefGoogle Scholar
  66. He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119PubMedCrossRefGoogle Scholar
  67. Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaïbi W (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol Environ Saf 73:1965–1974PubMedCrossRefGoogle Scholar
  68. Hoffmann T, Warmbold B, Smits SH, Tschapek B, Ronzheimer S, Bashir A, Chen C, Rolbetzki A, Pittelkow M, Jebbar M, Seubert A (2018) Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ Microbiol 20(1):305–323PubMedCrossRefGoogle Scholar
  69. Hossain M, Jahiruddin M, Panaullah G, Loeppert R, Islam M, Duxbury J (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut 156(3):739–744PubMedCrossRefGoogle Scholar
  70. Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874PubMedCrossRefGoogle Scholar
  71. Hu J, Tsang W, Wu F, Wu S, Wang J, Lin X, Wong MH (2016) Arbuscular mycorrhizal fungi optimize the acquisition and translocation of Cd and P by cucumber (Cucumis sativus L.) plant cultivated on a Cd-contaminated soil. J Soils Sediments 16:2195–2202CrossRefGoogle Scholar
  72. Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 1848:2–25Google Scholar
  73. Huang H, Zhang S, Wu N, Luo L, Christie P (2009) Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol Biochem 41:726–734CrossRefGoogle Scholar
  74. Huang JH, Hsu SH, Wang SL (2011) Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils. J Hazard Mater 186:1801–1807PubMedCrossRefGoogle Scholar
  75. Huang H, Jia Y, Sun G-X, Zhu Y-G (2012) Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environ Sci Technol 46(4):2163–2168PubMedCrossRefGoogle Scholar
  76. Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, Liao K (2015) Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environ Sci Pollut Res 22:1151–1159CrossRefGoogle Scholar
  77. Issam N, Kawther M, Haythem M, Moez J (2012) Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress. Plant Growth Regul 68:37–47CrossRefGoogle Scholar
  78. Jackson T, Macgillivray A (1995) Accounting for cadmium: tracking emissions of cadmium from the global economy. Chem Ecol 11:137–181.  https://doi.org/10.1080/02757549508039067CrossRefGoogle Scholar
  79. Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environ Sci Technol 33(8):1179–1184CrossRefGoogle Scholar
  80. JECFA (1986) FAO Food nutrition paper, Rome, No. 34Google Scholar
  81. Jia Y, Bao P, Zhu Y-G (2015) Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. J Soils Sediments 15(9):1960–1967CrossRefGoogle Scholar
  82. Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397PubMedCrossRefGoogle Scholar
  83. Jinadasa N, Collins D, Holford P, Milham PJ, Conroy JP (2016) Reactions to cadmium stress in a cadmium-tolerant variety of cabbage (Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Environ Sci Pollut Res 23:5296–5306CrossRefGoogle Scholar
  84. Jönsson EL, Asp H (2013) Effects of pH and nitrogen on cadmium uptake in potato. Biol Plant 57(4):788–792CrossRefGoogle Scholar
  85. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL, USAGoogle Scholar
  86. Kashem MA, Kawai S (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr 53:246–251CrossRefGoogle Scholar
  87. Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860PubMedCrossRefGoogle Scholar
  88. Khan BI, Jambeck J, Solo-Gabriele HM, Townsend TG, Cai Y (2006a) Release of arsenic to the environment from CCA-treated wood. 2. Leaching and speciation during disposal. Environ Sci Technol 40:994–999PubMedPubMedCentralCrossRefGoogle Scholar
  89. Khan BI, Solo-Gabriele HM, Townsend TG, Cai Y (2006b) Release of arsenic to the environment from CCA-treated wood. 1. Leaching and speciation during service. Environ Sci Technol 40:988–993PubMedCrossRefGoogle Scholar
  90. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fert Soil 50:75–85CrossRefGoogle Scholar
  91. Khan A, Khan S, Alam M, Khan MA, Aamir M, Qamar Z, Rehman ZU, Perveen S (2016a) Toxic metal interactions affect the bioaccumulation and dietary intake of macro-and micro-nutrients. Chemosphere 146:121–128PubMedCrossRefGoogle Scholar
  92. Khan S, Munir S, Sajjad M, Li G (2016b) Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. J Geochem Explor 165:102–110CrossRefGoogle Scholar
  93. Khan MA, Ding X, Khan S, Brusseau ML, Khan A, Nawab J (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810–817PubMedCrossRefGoogle Scholar
  94. Koc E, ÜSTÜN AS, Celik N (2013) Effect of exogenously applied salicylic acid on cadmium chloride-induced oxidative stress and nitrogen metabolism in tomato (Lycopersicon esculentum L.). Turk J Biol 37:361–369Google Scholar
  95. Konotop Y, Mezsaros P, Matusikova I, Batsmanova L, Taran N (2012) Application of nitrogen nutrition for improving tolerance of soybean seedlings to cadmium. Environ Exp Biol 10:139–144Google Scholar
  96. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefGoogle Scholar
  97. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33(6):2090–2102PubMedCrossRefGoogle Scholar
  98. Kumar P, Lucini L, Rouphael Y, Cardarelli M, Kalunke RM, Colla G (2015) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477PubMedPubMedCentralGoogle Scholar
  99. Kuo S, Huang B, Bembenek R (2004) The availability to lettuce of zinc and cadmium in a zinc fertilizer1. Soil Sci 169(5):363–373CrossRefGoogle Scholar
  100. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212(1):75–84PubMedCrossRefGoogle Scholar
  101. Kuriakose SV, Prasad MN (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156CrossRefGoogle Scholar
  102. Lafferty BJ, Ginder-Vogel M, Sparks DL (2011) Arsenite oxidation by a poorlycrystalline manganese oxide. 3. Arsenic and manganese desorption. Environ Sci Technol 45(21):9218–9223PubMedCrossRefGoogle Scholar
  103. Larsson Jönsson EH, Asp H (2011) Influence of nitrogen supply on cadmium accumulation in potato tubers. J Plant Nutr 34(3):345–360CrossRefGoogle Scholar
  104. Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075PubMedCrossRefGoogle Scholar
  105. Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60–67CrossRefGoogle Scholar
  106. León AM, Palma JM, Corpas FJ, Gómez M, Romero-Puertas MC, Chatterjee D, Mateos RM, Luis A, Sandalio LM (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820CrossRefGoogle Scholar
  107. Li R, Stroud J, Ma J, McGrath S, Zhao F (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43(10):3778–3783PubMedCrossRefPubMedCentralGoogle Scholar
  108. Li SW, Leng Y, Feng L, Zeng XY (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537CrossRefGoogle Scholar
  109. Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016a) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190PubMedCrossRefPubMedCentralGoogle Scholar
  110. Li LF, Ai SY, Wang YH, Tang MD, Li YC (2016b) In situ field-scale remediation of low Cd-contaminated paddy soil using soil amendments. Water Air Soil Pollut 227:342Google Scholar
  111. Li X, Zhou Q, Sun X, Ren W (2016c) Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem 194:101–110PubMedCrossRefPubMedCentralGoogle Scholar
  112. Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713CrossRefGoogle Scholar
  113. Liu Y, Xiao T, Ning Z, Li H, Tang J, Zhou G (2013) High cadmium concentration in soil. Springer, Netherlands, pp 283–311Google Scholar
  114. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  115. Lock K, Janssen CR (2003) Influence of aging on metal availability in soils. In: Reviews of environmental contamination and toxicology. Springer, New York, NY, pp 1–21Google Scholar
  116. Loebenstein JR (1994) The materials flow of arsenic in the United States. US Department of the Interior, Bureau of MinesGoogle Scholar
  117. Lofts S, Spurgeon DJ, Svendsen C, Tipping E (2004) Deriving soil critical limits for Cu, Zn, Cd, and Pb: a method based on free ion concentrations. Environ Sci Technol 38(13):3623–3631PubMedCrossRefPubMedCentralGoogle Scholar
  118. Lv G, Wang H, Xu C, Shuai H, Luo Z, Zhang Q, Zhu H, Wang S, Zhu Q, Zhang Y, Huang D (2019) Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study. Environ Sci Pollut Res 26:1–9CrossRefGoogle Scholar
  119. Lu Y, Dong F, Deacon C, Chen HJ, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158(5):1536–1541PubMedCrossRefPubMedCentralGoogle Scholar
  120. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397PubMedCrossRefPubMedCentralGoogle Scholar
  121. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  122. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235PubMedCrossRefPubMedCentralGoogle Scholar
  123. Mandal A, Purakayastha TJ, Patra AK (2014) Phytoextraction of arsenic contaminated soil by Chinese brake fern (Pteris vittata): effect on soil microbiological activities. Biol Fert Soils 50(8):1247–1252CrossRefGoogle Scholar
  124. Martens DC, Reed ST (1991) Zinc: unlocking agronomic potential. Solutions 1:29–31Google Scholar
  125. Martens J, Smolders E (2013) Zinc. In: Alloway BJ (ed) Heavy metals in soils – trace metals and metalloids in soils and their bioavailability, Environmental pollution 22. Springer, Dordrecht, pp 465–493Google Scholar
  126. Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M (2016) Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. J Environ Manag 180:24–34CrossRefGoogle Scholar
  127. Matschullat J (2000) Arsenic in the geosphere — a review. Sci Total Environ 249(1–3):297–312. Bibcode:2000ScTEn.249..297M.  https://doi.org/10.1016/S0048-9697(99)00524-0PubMedCrossRefPubMedCentralGoogle Scholar
  128. Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015) Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 135:328–335CrossRefGoogle Scholar
  129. Meharg AA (2004) Arsenic in rice–understanding a new disaster for South-East Asia. Trends Plant Sci 9(9):415–417PubMedCrossRefPubMedCentralGoogle Scholar
  130. Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, Cao H, Aschebrook-Kilfoy B, Ahmed A, Islam T, Slavcovich V (2013) Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS One 8(11):80691CrossRefGoogle Scholar
  131. Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59CrossRefGoogle Scholar
  132. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2004) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56(409):167–178PubMedPubMedCentralGoogle Scholar
  133. Mishra S, Stärk HJ, Küpper H (2014) A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics 6(3):444–454PubMedCrossRefPubMedCentralGoogle Scholar
  134. Mladenov N, Zheng Y, Miller MP, Nemergut DR, Legg T, Simone B, Hageman C, Rahman MM, Ahmed KM, McKnight DM (2009) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Technol 44(1):123–128CrossRefGoogle Scholar
  135. Mladenov N, Zheng Y, Simone B, Bilinski TM, McKnight DM, Nemergut D, Radloff KA, Rahman MM, Ahmed KM (2015) Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environ Sci Technol 49(18):10815–10824PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mohammad A, Moheman A (2010) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Arch Agron Soil Sci 56:551–561CrossRefGoogle Scholar
  137. Moulick D, Ghosh D, Santra SC (2016a) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578PubMedCrossRefPubMedCentralGoogle Scholar
  138. Moulick D, Ghosh D, Santra SC (2016b) An assessment of some physicochemical properties and cooking characteristics of milled rice and associated health risk in two rice varieties of arsenic contaminated areas of West Bengal, India. Int J Res Agric Food Sci 6:44–55Google Scholar
  139. Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L. cv IET-4094). Ecotoxicol Environ Saf 145:449–456PubMedCrossRefPubMedCentralGoogle Scholar
  140. Moulick D, Santra SC, Ghosh D (2018a) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Saf 152:67–77PubMedCrossRefPubMedCentralGoogle Scholar
  141. Moulick D, Santra SC, Ghosh D (2018b) Rice seed priming with se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mater 355:187–196PubMedCrossRefPubMedCentralGoogle Scholar
  142. Moulick D, Santra SC, Ghosh D (2018c) Seed priming with se mitigates as-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing as translocation. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-2711-xPubMedCrossRefPubMedCentralGoogle Scholar
  143. Moulick D, Santra SC, Ghosh D (2018d) Consequences of paddy cultivation in arsenic-contaminated paddy fields of lower Indo-Gangetic Plain on arsenic accumulation pattern and selected grain quality traits: a preliminary assessment. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and tolerance in plants. Springer, Singapore.  https://doi.org/10.1007/978-981-13-1292-2_3CrossRefGoogle Scholar
  144. Mozafariyan M, Shekari L, Hawrylak-Nowak B, Kamelmanesh MM (2014) Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biol Trace Elem Res 160:97–107PubMedCrossRefPubMedCentralGoogle Scholar
  145. Munoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151(2):541–558PubMedPubMedCentralCrossRefGoogle Scholar
  146. Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB (2017) Mitigating dietary arsenic exposure: current status in the United States and recommendations for an improved path forward. Sci Total Environ 581:221–236PubMedCrossRefPubMedCentralGoogle Scholar
  147. Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  148. Nassar NT, Barr R, Browning M, Diao Z, Friedlander E, Harper E, Henly C, Kavlak G, Kwatra S, Jun C (2012) Criticality of the geological copper family. Environ Sci Technol 46:1071–1078PubMedCrossRefPubMedCentralGoogle Scholar
  149. Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  150. Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154CrossRefGoogle Scholar
  151. Ning D, Liang Y, Song A, Duan A, Liu Z (2016) In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environ Sci Pollut Res 23:23638–23647CrossRefGoogle Scholar
  152. Noriega G, Caggiano E, Lecube ML, Santa Cruz D, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25:1155–1165PubMedCrossRefPubMedCentralGoogle Scholar
  153. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169):134PubMedPubMedCentralCrossRefGoogle Scholar
  154. Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390:53–57PubMedCrossRefPubMedCentralGoogle Scholar
  155. Pan Y, Koopmans GF, Bonten LTC, Song J, Luo Y, Temminghoff EJM, Comans RNJ (2014) Influence of pH on the redox chemistry of metal (hydr) oxides and organic matter in paddy soils. J Soils Sediments 14(10):1713–1726CrossRefGoogle Scholar
  156. Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29:567–575CrossRefGoogle Scholar
  157. Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2007) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  158. Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC (2014) Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ Int 72:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  159. Piterková J, Luhová L, Navrátilová B, Sedlářová M, Petřivalský M (2015) Early and long-term responses of cucumber cells to high cadmium concentration are modulated by nitric oxide and reactive oxygen species. Acta Physiol Plant 37:19CrossRefGoogle Scholar
  160. Polle A, Klein T, Kettner C (2013) Impact of cadmium on young plants of Populus euphratica and P.× canescens, two poplar species that differ in stress tolerance. New For 44:13–22CrossRefGoogle Scholar
  161. Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254:771–783PubMedCrossRefPubMedCentralGoogle Scholar
  162. Qiu Q, Wang Y, Yang Z, Yuan J (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49:2260–2267PubMedCrossRefPubMedCentralGoogle Scholar
  163. Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  164. Radloff KA, Cheng Z, Rahman MW, Ahmed KM, Mailloux BJ, Juhl AR, Schlosser P, van Geen A (2007) Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh. Environ Sci Technol 41(10):3639PubMedPubMedCentralCrossRefGoogle Scholar
  165. Rahaman S, Sinha AC, Mukhopadhyay D (2011) Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci Heal A 23(4):633–639Google Scholar
  166. Rahman MF, Ghosal A, Alam MF, Kabir AH (2017) Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf 135:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  167. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedPubMedCentralCrossRefGoogle Scholar
  168. Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 27(6):959–975CrossRefGoogle Scholar
  169. Richardson S (2017) Evaluating potential health effects of secondary drinking water contaminants. J Environ Health 80(4):40–43Google Scholar
  170. Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016a) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427CrossRefGoogle Scholar
  171. Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016b) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  172. Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016c) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879CrossRefGoogle Scholar
  173. Roychoudhury A, Ghosh S, Paul S, Mazumdar S, Das G, Das S (2016) Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiol Plant 38:11CrossRefGoogle Scholar
  174. Saifullah, Javed H, Naeem A et al (2016) Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ Sci Pollut Res 23:16432PubMedCrossRefGoogle Scholar
  175. Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91PubMedCrossRefPubMedCentralGoogle Scholar
  176. Said-Pullicino D, Miniotti EF, Sodano M, Bertora C, Lerda C, Chiaradia EA, Romani M, de Maria SC, Sacco D, Celi L (2016) Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices. Plant Soil 401(1–2):273–290CrossRefGoogle Scholar
  177. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126CrossRefGoogle Scholar
  178. Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in foodchain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13CrossRefGoogle Scholar
  179. Sappin-Didier V, Vansuyts G, Mench M, Briat JF (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270(1):189–197CrossRefGoogle Scholar
  180. Sarkar S, Basu B, Kundu CK et al (2012) Deficit irrigation: an option to mitigate arsenic load of rice grain in West Bengal, India. Agric Ecosyst Environ 146:147–152CrossRefGoogle Scholar
  181. Seuntjens P, Nowack B, Schulin R (2004) Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265(1–2):61–73CrossRefGoogle Scholar
  182. Shah MT, Begum S, Khan S (2010) Pedo biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environ Earth Sci 60:1091–1102CrossRefGoogle Scholar
  183. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Huq SI, Kawai S (2006) Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci Plant Nutr 52(6):691–700CrossRefGoogle Scholar
  184. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Alam S, Huq SI, Kawai S (2008) Critical toxicity level of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic sorghum. Water Air Soil Pollut 191(1–4):279–292CrossRefGoogle Scholar
  185. Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28CrossRefGoogle Scholar
  186. Shamsi IH, Zhang G, Hu H, Xue Q, Hussain N, Essa A, Shen Q, Zheng W, Zhang Q, Liu X, Jabeen Z (2014) Assessment of the hazardous effects of Cd on physiological and biochemical characteristics of soybean genotypes. Int J Agric Biol 16(1):41–48Google Scholar
  187. Shanying HE, Xiaoe YA, Zhenli HE, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421–438CrossRefGoogle Scholar
  188. Sharma AK, Tjell JC, Sloth JJ, Holm PE (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 41:11–33CrossRefGoogle Scholar
  189. Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107PubMedCrossRefGoogle Scholar
  190. Shibata T, Solo-Gabriele HM, Fleming LE, Cai Y, Townsend TG (2007) A mass balance approach for evaluating leachable arsenic and chromium from an inservice CCA-treated wood structure. Sci Total Environ 372:624–635PubMedCrossRefGoogle Scholar
  191. Siddiqui S, Meghvansi MK, Wani MA, Jabee F (2009) Evaluating cadmium toxicity in the root meristem of Pisumsativum L. Acta Physiol Plant 31:531CrossRefGoogle Scholar
  192. Signes-Pastor AJ, Carey M, Carbonell-Barrachina AA, Moreno-Jiménez E, Green AJ, Meharg AA (2016a) Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula. Food Chem 202:356–363PubMedCrossRefGoogle Scholar
  193. Signes-Pastor AJ, Carey M, Meharg AA (2016b) Inorganic arsenic in rice-based products for infants and young children. Food Chem 191:128–134PubMedCrossRefGoogle Scholar
  194. Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRefGoogle Scholar
  195. Somenahally AC, Hollister EB, Yan W et al (2011) Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ Sci Technol 45:8328–8335PubMedCrossRefGoogle Scholar
  196. Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83PubMedCrossRefGoogle Scholar
  197. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  198. Spanu A, Daga L, Orlandoni AM et al (2012) The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ Sci Technol 46:8333–8340PubMedCrossRefGoogle Scholar
  199. Sun GX, Williams PN, Zhu YG, Deacon C, Carey AM, Raab A, Feldmann J, Meharg AA (2009) Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int 35(3):473–475PubMedCrossRefGoogle Scholar
  200. Sun HW, Ha J, Liang SX, Kang WJ (2010) Protective role of selenium on garlic growth under cadmium stress. Commun Soil Sci Plant Anal 41:1195–1204CrossRefGoogle Scholar
  201. Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, Chen S (2013) Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem 65:67–74PubMedCrossRefGoogle Scholar
  202. Suo YY, Wu SW, Zhu JJ, Pan FS, Feng Y (2012) Effects of foliar Zn application on rice yield and element contents under different Cd levels. J Zhejiang Univ (Agric Life Sci) 38:449–458Google Scholar
  203. Száková J, Tlustoš P, Goessler W, Frková Z, Najmanová J (2009) Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods. J Hazard Mater 172:1244–1251PubMedCrossRefPubMedCentralGoogle Scholar
  204. Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714Google Scholar
  205. Tack FM, Esteban-Mozo J, Verloo MG (1998) Cadmium uptake by cucumber plants as affected by fluctuations in nutrient solution cadmium concentration during growth. Commun Soil Sci Plant Anal 29:3015–3021CrossRefGoogle Scholar
  206. Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8PubMedCrossRefGoogle Scholar
  207. Tang X, Pang Y, Ji P, Gao P, Nguyen TH, Tong YA (2016) Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf 125:102–106PubMedCrossRefGoogle Scholar
  208. Tani Y, Miyata N, Ohashi M, Ohnuki T, Seyama H, Iwahori K, Soma M (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environ Sci Technol 38(24):6618–6624PubMedCrossRefGoogle Scholar
  209. Tareq SM, Maruo M, Ohta K (2013) Characteristics and role of groundwater dissolved organic matter on arsenic mobilization and poisoning in Bangladesh. Phys Chem Earth 58:77–84CrossRefGoogle Scholar
  210. Tran TA, Vassileva V, Petrov P, Popova LP (2013) Cadmium-induced structural disturbances in Pisum sativum leaves are alleviated by nitric oxide. Turk J Bot 37:698–707CrossRefGoogle Scholar
  211. Treder W, Cieslinski G (2005) Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. J Plant Nutr 28(6):917–929CrossRefGoogle Scholar
  212. Tsadilas CD, Karaivazoglou NA, Tsotsolis NC, Stamatiadis S, Samaras V (2005) Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Environ Pollut 134(2):239–246PubMedCrossRefGoogle Scholar
  213. Tu S, Ma LQ, MacDonald GE, Bondada E (2003) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131CrossRefGoogle Scholar
  214. Tudoreanu L, Phillips CJ (2004) Empirical models of cadmium accumulation in maize, rye grass and soya bean plants. J Sci Food Agric 84(8):845–852CrossRefGoogle Scholar
  215. U.S. Geological Survey (2017) Mineral Commodity Summaries (2017) U.S. Geological Survey.  https://doi.org/10.3133/70180197 (202 p., ISBN 978-1-4113-4104-3)
  216. Ultra VU Jr, Nunez JP, Lee SC (2016) Influence of charcoal-based soil amendments on growth and nutrient uptake of rice (Oryza sativa) in cadmium contaminated soil. Emir J Food Agric 2016:872–881CrossRefGoogle Scholar
  217. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688PubMedPubMedCentralCrossRefGoogle Scholar
  218. Varalakshmi LR, Ganeshamurthy AN (2013) Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake. Commun Soil Sci Plant Anal 44:1444–1456CrossRefGoogle Scholar
  219. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf.(Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242PubMedCrossRefPubMedCentralGoogle Scholar
  220. Wang L, Xu Y, Sun Y, Liang X, Lin D (2014) Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation. Front Environ Sci Eng 8:877–887CrossRefGoogle Scholar
  221. Wang P, Deng X, Huang Y, Fang X, Zhang J, Wan H, Yang C (2016a) Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. Environ Sci Pollut Res 23:1860–1872CrossRefGoogle Scholar
  222. Wang S, Wang F, Gao S, Wang X (2016b) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:228CrossRefGoogle Scholar
  223. Wang H, Xu C, Luo ZC, Zhu HH, Wang S, Zhu QH, Huang DY, Zhang YZ, Xiong J, He YB (2018) Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions. Environ Sci Pollut Res 25:29287–29294CrossRefGoogle Scholar
  224. WHO (2000) Air quality guidelines for Europe. WHO Regional Publications, European Series, No. 91. World Health Organization Regional Office for Europe, CopenhagenGoogle Scholar
  225. Wilkin RT, Wallschläger D, Ford RG (2003) Speciation of arsenic in sulfidic waters. Geochem Trans 4(1):1–7PubMedCentralCrossRefGoogle Scholar
  226. Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Brammer H, Islam MR (2011) Organic matter – solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45(14):6080–6087PubMedCrossRefPubMedCentralGoogle Scholar
  227. Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and biokinetic properties of Solar Saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol J 30:497–500CrossRefGoogle Scholar
  228. Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453PubMedPubMedCentralGoogle Scholar
  229. Wu Z, Wang F, Liu S, Du Y, Li F, Du R, Wen D, Zhao J (2016) Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 131:173–180CrossRefGoogle Scholar
  230. Xin J, Huang B (2014) Subcellular distribution and chemical forms of cadmium in two hot pepper cultivars differing in cadmium accumulation. J Agric Food Chem 62:508–515PubMedCrossRefPubMedCentralGoogle Scholar
  231. Xu XY, McGrath SP, Meharg AA et al (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579PubMedCrossRefPubMedCentralGoogle Scholar
  232. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83(7):925–932PubMedCrossRefPubMedCentralGoogle Scholar
  233. Yang CM, Juang KW (2015) Alleviation effects of calcium and potassium on cadmium rhizotoxicity and absorption by soybean and wheat roots. J Plant Nutr Soil Sci 178:748–754CrossRefGoogle Scholar
  234. Yang JX, Wang LQ, Wei DP, Chen SB, Ma YB (2011) Foliar spraying and seed soaking of zinc fertilizers decreased cadmium accumulation in cucumbers grown in Cd-contaminated soils. Soil Sediment Contam 20:400–410CrossRefGoogle Scholar
  235. Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK (2012) Iron (III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ Sci Technol 46:2251–2256PubMedCrossRefPubMedCentralGoogle Scholar
  236. Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, Wang H (2016) Effect of biochar on the extractability of heavy metals (cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23(2):974–984CrossRefGoogle Scholar
  237. Yin B, Zhou L, Yin B, Chen L (2016) Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. J Soils Sediments 16:537–546CrossRefGoogle Scholar
  238. Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167(2):81–87PubMedCrossRefPubMedCentralGoogle Scholar
  239. Youngran J, Maohong F, Van Leeuwen J, Belczyk JF (2007) Effect of competing solutes on arsenic (V) adsorption using iron and aluminum oxides. J Environ Sci 19(8):910–919CrossRefGoogle Scholar
  240. Yu L, Gao R, Shi Q, Wang X, Wei M, Yang FE (2013) Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pak J Bot 45:813–819Google Scholar
  241. Yu HY, Liu C, Zhu J, Li F, Deng DM, Wang Q, Liu C (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45PubMedCrossRefPubMedCentralGoogle Scholar
  242. Yu Y, Wan Y, Wang Q, Li H (2017) Effect of humic acid-based amendments with foliar application of Zn and Se on Cd accumulation in tobacco. Ecotoxicol Environ Saf 138:286–291PubMedCrossRefPubMedCentralGoogle Scholar
  243. Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markerts BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Amsterdam, pp 329–375Google Scholar
  244. Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011a) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483PubMedCrossRefPubMedCentralGoogle Scholar
  245. Zhang J, Zhao QZ, Duan GL, Huang YC (2011b) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40CrossRefGoogle Scholar
  246. Zhang XJ, Liu JZ, Xu WH, Chen GQ, Wang HX, Zhang HB, Han GQ, Zeng HJ, Lan CT, Xiong ZT, Wei SQ (2011c) Effect of phosphor on accumulation and chemical forms of cadmium, and physiological characterization in different varieties of capsicum annuum L.Chin. Environ Sci 32:1171–1176Google Scholar
  247. Zhi Y, He K, Sun T, Zhu Y, Zhou Q (2015) Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. J Environ Sci 35:108–114CrossRefGoogle Scholar
  248. Zhipeng WU, Weidong WU, Shenglu ZH, Shaohua WU (2016) Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere 26:13–26CrossRefGoogle Scholar
  249. Zhou XU, Feng QYU, Yu H, Liao ML, Liu YC, Wang CQ, Tu SH (2013) Effects of magnesium, manganese, activated carbon and lime and their interactions on cadmium uptake by wheat. Acta Ecol Sin 33:4289–4296CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Debojyoti Moulick
    • 1
  • Bhaben Chowardhara
    • 1
  • Sanjib Kumar Panda
    • 1
  1. 1.Plant Molecular Biotechnology LaboratoryAssam University SilcharAssamIndia

Personalised recommendations