Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss

  • Mitul Kotecha
  • Medhavi
  • Shivani Chaudhary
  • Naina Marwa
  • Farah Deeba
  • Vivek Pandey
  • Vishal Prasad


Agriculture plays a vital role in uplifting the lives of farmers and also contributes towards the economic prosperity of a nation. In recent years, rapid urbanization and industrialization with enhanced anthropogenic activities has adversely affected our agricultural sector regionally as well as globally. Heavy metal contamination of agricultural lands has not only deteriorated crop quality but has also reduced plant growth, performance and productivity. Heavy metals like Lead, Cadmium, Mercury, Chromium and Arsenic are the major environmental pollutants released in the environment either naturally or anthropogenically, having potential to cause serious environmental problems and other health-related issues. Excessive accumulation of heavy metals in crops/plants results in production of reactive oxygen species, which disturbs the redox balance of the system, ultimately leading to peroxidation of lipids, enzyme inactivation, DNA damage, oxidation of proteins and interaction with other vital constituents of the cell. This chapter tries to focus on the sources and impacts of heavy metal stress on crop productivity.


Arsenic Cadmium Chromium Crop loss Lead Zinc 


  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22(11):8148–8162CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for arsenic. US Department of Health and Human Services, AtlantaGoogle Scholar
  3. Ahmed FS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283(1–2):33CrossRefGoogle Scholar
  4. AL-Hiyaly SA, McNeilly T, Bradshaw AD (1988) The effects of zinc contamination from electricity pylons–evolution in a replicated situation. New Phytol 110(4):571–580CrossRefGoogle Scholar
  5. Ali S, Bai P, Zeng F, Cai S, Shamsi IH, Qiu B, Zhang G (2011) The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ Exper Bot 70(2):185–191CrossRefGoogle Scholar
  6. Ammar WB, Nouairi I, Zarrouk M, Ghorbel MH, Jemal F (2008) Antioxidative response to cadmium in roots and leaves of tomato plants. Biol Plant 52(4):727–731CrossRefGoogle Scholar
  7. Anawar HM, Akai J, Mostofa KMG, Safiullah S, Tareq SM (2002) Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int 27(7):597–604PubMedCrossRefGoogle Scholar
  8. Annual Report (2016–17) Department of Agriculture, Cooperation and Farmers Welfare. Ministry of Agriculture and Farmers Welfare Government of IndiaGoogle Scholar
  9. Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies — a mini review. Environ Sci Pollut Res 22(23):18318–18332CrossRefGoogle Scholar
  10. Austruy A, Shahid M, Xiong T, Castrec M, Payre V, Niazi NK, Dumat C (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soils Sediments 14(4):666–678CrossRefGoogle Scholar
  11. Bah AM, Sun H, Chen F, Zhou J, Dai H, Zhang G, Wu F (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184(1):191–203PubMedCrossRefGoogle Scholar
  12. Barbosa RH, Tabaldi LA, Miyazaki FR, Pilecco M, Kassab SO, Bigaton D (2013) Foliar copper uptake by maize plants: effects on growth and yield. Cienc Rural 43(9):1561–1568CrossRefGoogle Scholar
  13. Bilos C, Colombo JC, Skorupka CN, Presa MR (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Poll 111(1):149–158CrossRefGoogle Scholar
  14. Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47(1):47–57CrossRefGoogle Scholar
  15. Blaylock MJ, Huang JW (2000) In: Raskin I, Ensley BD (eds) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New YorkGoogle Scholar
  16. Bolter E (1974) Distribution of heavy metals in soils near an active lead smelter. Department of Civil Engineering, University of Missouri, RollaGoogle Scholar
  17. Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediation 4(2):87–100PubMedCrossRefGoogle Scholar
  18. Bradford WI (1997) Urban storm water pollutant loadings a statistical summary through. JWPCF 49:610–613Google Scholar
  19. Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654CrossRefGoogle Scholar
  20. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102(2):151–161CrossRefGoogle Scholar
  21. Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867PubMedCrossRefGoogle Scholar
  22. Cai L, Xu Z, Ren M, Guo Q, Hu X, Hu G, Peng P (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8PubMedCrossRefGoogle Scholar
  23. Cakmak I, Marschner H (1993) Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. Plant Soil 155(1):127–130CrossRefGoogle Scholar
  24. Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa ME (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71(1):57–64CrossRefGoogle Scholar
  25. Carbonell-Barrachina AA, Burló F, Mataix J (1998) Response of bean micronutrient nutrition to arsenic and salinity. J Plant Nutr 21(6):1287–1299CrossRefGoogle Scholar
  26. Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Morsch VM (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65(6):999–1006PubMedCrossRefGoogle Scholar
  27. Carrasco-Gil S, Estebaranz-Yubero M, Medel-Cuesta D, Millán R, Hernández LE (2012) Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ Exp Bot 75:16–24CrossRefGoogle Scholar
  28. Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216(6):939–950PubMedGoogle Scholar
  29. Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243:119–127CrossRefGoogle Scholar
  30. Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradère P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144(1):287–298CrossRefGoogle Scholar
  31. Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exper Bot 67(3):467–473CrossRefGoogle Scholar
  32. Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35(1–2):255–265CrossRefGoogle Scholar
  33. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean (Weinh) 37(4–5):304–313Google Scholar
  34. Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J Environ Sci 23(5):837–844CrossRefGoogle Scholar
  35. Cheung WY (1988) Calmodulin and its activation by cadmium ion. Ann N Y Acad Sci 522(1):74–87PubMedCrossRefGoogle Scholar
  36. Chigbo C, Batty L (2013) Effect of combined pollution of chromium and benzo (a) pyrene on seed growth of Lolium perenne. Chemosphere 90(2):164–169PubMedCrossRefGoogle Scholar
  37. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Roy S (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397PubMedPubMedCentralCrossRefGoogle Scholar
  38. Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7(1):31–40PubMedCrossRefGoogle Scholar
  39. Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45(3):262–268CrossRefGoogle Scholar
  40. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667PubMedPubMedCentralCrossRefGoogle Scholar
  41. DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117–1132PubMedCrossRefGoogle Scholar
  42. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36PubMedCrossRefGoogle Scholar
  43. Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30(3):383–387PubMedCrossRefGoogle Scholar
  44. Davidson CI, Santhanam S, Fortmann RC, Marvin PO (1985) Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos Environ 19(12):2065–2081CrossRefGoogle Scholar
  45. Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J Plant Nutr 25(11):2389–2407CrossRefGoogle Scholar
  46. Dazy M, Masfaraud JF, Férard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75(3):297–302PubMedCrossRefGoogle Scholar
  47. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exper Bot 52(3):253–266CrossRefGoogle Scholar
  48. Desmet G, De Ruyter A, Ringoet A (1975) Absorption and metabolism of CrO42− by isolated chloroplasts. Phytochemistry 14(12):2585–2588CrossRefGoogle Scholar
  49. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289CrossRefGoogle Scholar
  50. Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97CrossRefGoogle Scholar
  51. Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Safety 74(1):48–54PubMedCrossRefGoogle Scholar
  52. Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013) Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 185(12):9843–9856PubMedCrossRefGoogle Scholar
  53. Dubey RS (2010) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203CrossRefGoogle Scholar
  54. Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114PubMedCrossRefGoogle Scholar
  55. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781CrossRefGoogle Scholar
  56. Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165(6):600–611PubMedCrossRefGoogle Scholar
  57. Eshleman A, Siegel SM, Siegel BZ (1971) Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 233(5320):471–472PubMedCrossRefGoogle Scholar
  58. Farias JG, Antes FL, Nunes PA, Nunes ST, Schaich G, Rossato LV, Nicoloso FT (2013) Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Ener Sec 2(1):49–69CrossRefGoogle Scholar
  59. Fidalgo F, Azenha M, Silva AF, Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanumnigrum L. and antioxidant defense system responses. Food Ener Sec 2(1):70–80CrossRefGoogle Scholar
  60. Fornazier RF, Ferreira RR, Vitória AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97CrossRefGoogle Scholar
  61. Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435PubMedCrossRefGoogle Scholar
  62. Foy CD, Chaney RT, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566CrossRefGoogle Scholar
  63. Gajewska E, Skłodowska M, Słaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659CrossRefGoogle Scholar
  64. Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159CrossRefGoogle Scholar
  65. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514PubMedCrossRefGoogle Scholar
  66. Gang A, Vyas A, Vyas H (2013) Toxic effect of heavy metals on germination and seedling growth of wheat. J Environ Res Develop 8(2):206Google Scholar
  67. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321CrossRefGoogle Scholar
  68. Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2(6):1043–1055Google Scholar
  69. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120PubMedCrossRefGoogle Scholar
  70. Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92(1):19–25PubMedCrossRefGoogle Scholar
  71. Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113(4):507–514CrossRefGoogle Scholar
  72. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488CrossRefGoogle Scholar
  73. Gu SH, Zhu JZ, Gu ZL (1989) Study on the critical lead content of red paddy soil. Agro-Environ Prot 8:17–22Google Scholar
  74. Guala SD, Vega FA, Covelo EF (2010) The dynamics of heavy metals in plant–soil interactions. Ecol Model 221(8):1148–1152CrossRefGoogle Scholar
  75. Gussarson M, Asp H, Adalsteinsson S, Jensen P (1996) Enhancement of cadmium effects on growth and nutrient composition of birch ( Betula pendula) by buthionine sulphoximine (BSO). J Exp Bot 47:211–215CrossRefGoogle Scholar
  76. Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465CrossRefGoogle Scholar
  77. Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368(2):753–768PubMedCrossRefGoogle Scholar
  78. Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126(1):299–306PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84(10):1446–1451PubMedCrossRefGoogle Scholar
  80. Hassan MJ, Shao G, Zhang G (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28(7):1259–1270CrossRefGoogle Scholar
  81. Hawkes JS (1997) Heavy metals. J Chem Edu 74:1369–1374CrossRefGoogle Scholar
  82. Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160(6):1085–1093PubMedCrossRefGoogle Scholar
  83. Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64(1):33–39PubMedCrossRefGoogle Scholar
  84. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321(1–2):117–152CrossRefGoogle Scholar
  85. Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65(4):591–598PubMedCrossRefGoogle Scholar
  86. Izosimova A (2005) Modelling the interaction between calcium and nickel in the soil-plant system. Agric Res Special Issue 288:99Google Scholar
  87. Jain R, Srivastava S, Madan VK (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5(3):228–231Google Scholar
  88. Janicka-Russak M, Kabała K, Burzyński M, Kłobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumissativus roots. J Exp Bot 59(13):3721–3728PubMedPubMedCentralCrossRefGoogle Scholar
  89. Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium-or copper-treated Secale cereale. Plant Cell Physiol 51(8):1330–1340PubMedCrossRefGoogle Scholar
  90. Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039PubMedCrossRefGoogle Scholar
  91. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69PubMedCrossRefGoogle Scholar
  92. Khan NA, Anjum NA, Nazar R, Iqbal N (2009) Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russian J Plant Physiol 56(5):670–677CrossRefGoogle Scholar
  93. Kim YH, Lee HS, Kwak SS (2010) Differential responses of sweet potato peroxidases to heavy metals. Chemosphere 81(1):79–85PubMedCrossRefGoogle Scholar
  94. Ko KS, Lee PK, Kong IC (2012) Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays. App Microbiol Biotechnol 95(5):1343–1350CrossRefGoogle Scholar
  95. Kraal H, Ernst W (1976) Influence of copper high tension lines on plants and soils. Environ Pollut (1970) 11(2):131–135CrossRefGoogle Scholar
  96. Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 97(3–4):209–221Google Scholar
  97. Lee CW, Jackson MB, Duysen ME, Freeman TP, Self JR (1996) Induced micronutrient toxicity in ‘Touchdown’ Kentucky bluegrass. Crop Sci 36(3):705–712CrossRefGoogle Scholar
  98. Lepp NW (1981) Effect of heavy metal pollution on plants. Applied Science Publishers, LondonCrossRefGoogle Scholar
  99. Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51(3):277–291PubMedCrossRefGoogle Scholar
  100. Liao YC, Chien SC, Wang MC, Shen Y, Hung PL, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65(2):343–351PubMedCrossRefGoogle Scholar
  101. Liu JJ, Wei Z, Li JH (2014) Effects of copper on leaf membrane structure and root activity of maize seedling. Bot Stud 55(1):47PubMedPubMedCentralCrossRefGoogle Scholar
  102. López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65(2):376–385CrossRefGoogle Scholar
  103. Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26PubMedCrossRefGoogle Scholar
  104. Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41:1285–1290Google Scholar
  105. Malik NJ, Chamon AS, Mondol MN, Elahi SF, Faiz SMA (2011) Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). J Bangladesh Assoc Young Researchers BAYR 1(1):79–91CrossRefGoogle Scholar
  106. Márquez-García B, Márquez C, Sanjosé I, Nieva FJJ, Rodríguez-Rubio P, Muñoz-Rodríguez AF (2013) The effects of heavy metals on germination and seedling characteristics in two halophyte species in Mediterranean marshes. Marine Poll Bull 70(1–2):119–124CrossRefGoogle Scholar
  107. Marschner H (1986) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  108. Meena RS, Yadav RS (2013) Groundnut yields as influenced by heat unit efficiency, levels of fertility and varieties under different growing environment in hyper arid zone of Rajasthan. Indian J Ecol 40(1):110–114Google Scholar
  109. Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Kansotia BC (2015) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in western dry zone of India. Am J Exp Agr 7(3):170–177CrossRefGoogle Scholar
  110. Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74(10):1279–1291PubMedCrossRefGoogle Scholar
  111. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43CrossRefGoogle Scholar
  112. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653–671PubMedCrossRefGoogle Scholar
  113. Meng Q, Zou J, Zou JH, Jiang WS, Liu DH (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biol Cracov Ser Bot 49(1):95–101Google Scholar
  114. Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B Appl Biomater 75(2):257–263PubMedCrossRefGoogle Scholar
  115. Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298(1–2):99–111CrossRefGoogle Scholar
  116. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653PubMedCrossRefGoogle Scholar
  117. Mitra AK, Bose BK, Kabir H, Das BK, Hussain M (2002) Arsenic-related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20(3):198–204PubMedGoogle Scholar
  118. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164(5):601–610PubMedCrossRefGoogle Scholar
  119. Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents and enzyme activities. Plant Soil 182(2):287–300CrossRefGoogle Scholar
  120. Mokgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int J Phytoremediation 10(1):47–60PubMedPubMedCentralCrossRefGoogle Scholar
  121. Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36(4):804–817PubMedCrossRefGoogle Scholar
  122. Monni S, Salemaa M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109(2):221–229PubMedCrossRefGoogle Scholar
  123. Muccifora S, Bellani LM (2013) Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ Pollut 179:68–74PubMedCrossRefGoogle Scholar
  124. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663PubMedCrossRefGoogle Scholar
  125. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Conta Toxicol 43(2):203–213CrossRefGoogle Scholar
  126. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  127. Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3(10):1476CrossRefGoogle Scholar
  128. Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedling growth and biochemical responses in Solanum melongena. Nat Env Poll Tech 1(3):285–290Google Scholar
  129. Nelson WO, Campbell PG (1991) The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments: a literature review. Environ Pollut 71(2–4):91–130PubMedCrossRefGoogle Scholar
  130. Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2(4):969–974Google Scholar
  131. Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26CrossRefGoogle Scholar
  132. Nriagu JO (1988) A silent epidemic of environmental metal poisoning. Environ Poll 50(1–2):139–161CrossRefGoogle Scholar
  133. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47CrossRefGoogle Scholar
  134. Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56(418):2239–2251PubMedCrossRefGoogle Scholar
  135. Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462Google Scholar
  136. Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere 2. Wiley, New YorkGoogle Scholar
  137. Panda GC, Das SK, Bandopadhyay TS, Guha AK (2007) Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids Surf B Biointerfaces 57(2):135–142PubMedCrossRefGoogle Scholar
  138. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758CrossRefGoogle Scholar
  139. Pandey PK, Yadav S, Nair S, Bhui A (2002) Arsenic contamination of the environment: a new perspective from central-east India. Environ Int 28(4):235–245PubMedCrossRefGoogle Scholar
  140. Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185(2):549–574PubMedCrossRefGoogle Scholar
  141. Parr PD, Taylor FG (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7(3):197–202CrossRefGoogle Scholar
  142. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  143. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223CrossRefGoogle Scholar
  144. Pätsikkä E, Kairavuo M, Šeršen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129(3):1359–1367PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pehlivan E, Özkan AM, Dinç S, Parlayici Ş (2009) Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mat 167(1–3):1044–1049CrossRefGoogle Scholar
  146. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Tox 66(6):727–734Google Scholar
  147. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548PubMedCrossRefGoogle Scholar
  148. Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mat 289:219–234CrossRefGoogle Scholar
  149. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133(2):829–837PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326(1):239–247PubMedCrossRefGoogle Scholar
  151. Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 726(2):123–128CrossRefGoogle Scholar
  152. Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Heavy metal stress in plants. Springer, Berlin HeidelbergGoogle Scholar
  153. Prasad MNV, Hagmeyer J (1999) Heavy metal stress in plants. Springer, Berlin, pp 16–20CrossRefGoogle Scholar
  154. Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremediation 3(3):289–300CrossRefGoogle Scholar
  155. Quartacci MF, Pinzino C, Sgherri CL, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108(1):87–93CrossRefGoogle Scholar
  156. Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28(3):393–404CrossRefGoogle Scholar
  157. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181PubMedCrossRefGoogle Scholar
  158. Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879CrossRefGoogle Scholar
  159. Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ 27(9):1122–1134CrossRefGoogle Scholar
  160. Ros R, Cook DT, Martinez-Cortina C, Picazo I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. J Exp Bot 43(11):1475–1481CrossRefGoogle Scholar
  161. Ross SM (1994) Toxic metals in soil-plant systems. Wiley, ChichesterGoogle Scholar
  162. Ross RG, Stewart DK (1962) Movement and accumulation of mercury in apple trees and soil. Can J Plant Sci 42(2):280–285CrossRefGoogle Scholar
  163. Rout GR, Dass P (2003) Effect of metal toxicity on plant growth and metabolism: I. Agronomic 23:3–11CrossRefGoogle Scholar
  164. Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) link. Chemos 40(8):855–859CrossRefGoogle Scholar
  165. Saifullah Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemos 74(10):1279–1291CrossRefGoogle Scholar
  166. Saito A, Saito M, Ichikawa Y, Yoshiba M, Tadano T, Miwa E, Higuchi K (2010) Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotiana tabacum L. cv. BY-2 cells. Plant Cell Environ 33(2):174–187PubMedCrossRefGoogle Scholar
  167. Sammut ML, Noack Y, Rose J, Hazemann JL, Proux O, Depoux M, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemos 78(4):445–450CrossRefGoogle Scholar
  168. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sandmann G, Boger P (1983) Enzymological function of heavy metals and their role in electron transfer processes of plants. Encyclopedia of plant physiology, New series. Springer, BerlinGoogle Scholar
  170. Scheck HJ, Pscheidt JW (1998) Effect of copper bactericides on copper-resistant and-sensitive strains of Pseudomonas syringae pv. syringae. Plant Dis 82(4):397–406PubMedCrossRefGoogle Scholar
  171. Seaward MRD, Richardson DHS (1989) Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 75–92Google Scholar
  172. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12PubMedCrossRefGoogle Scholar
  173. Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127PubMedGoogle Scholar
  174. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Switzerland, pp 1–25Google Scholar
  175. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Alam S, Huq SI, Kawai S (2008) Critical toxicity level of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic sorghum. Water Air Soil Pollut 191(1–4):279–292CrossRefGoogle Scholar
  176. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209(2–3):133–142PubMedCrossRefGoogle Scholar
  177. Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003) Uptake and phytoaccumulation of chromium by selected tree species. In: Proceedings of the international conference on water and environment held in Bhopal, IndiaGoogle Scholar
  178. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52CrossRefGoogle Scholar
  179. Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038PubMedCrossRefGoogle Scholar
  180. Singh D, Nath K, Sharma YK (2007) Response of wheat seed germination and seedling growth under copper stress. J Environ Biol 28:409–414PubMedGoogle Scholar
  181. Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate–glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70PubMedCrossRefGoogle Scholar
  182. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143PubMedPubMedCentralGoogle Scholar
  183. Smith SR (1996) Agricultural recycling of sewage sludge and the environment. Cab. International, WillingfordGoogle Scholar
  184. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103PubMedPubMedCentralGoogle Scholar
  185. Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85(1):85–89CrossRefGoogle Scholar
  186. Song WE, Chen SB, Liu JF, Li CH, Song NN, Ning LI, Bin LI (2015) Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric 14(9):1845–1854CrossRefGoogle Scholar
  187. Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1(4):193–197CrossRefGoogle Scholar
  188. Sprynskyy M, Kosobucki P, Kowalkowski T, Buszewski B (2007) Influence of clinoptilolite rock on chemical speciation of selected heavy metals in sewage sludge. J Hazard Mater 149(2):310–316PubMedCrossRefGoogle Scholar
  189. Srivastava S, Srivastava AK, Suprasanna P, D'souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60(12):3419–3431CrossRefGoogle Scholar
  190. Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisumsativum L. seedlings. Biolog Trace Ele Res 149(1):86–96CrossRefGoogle Scholar
  191. Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins – physiological consequences. J Biol Chem 266(4):2005–2008PubMedGoogle Scholar
  192. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95Google Scholar
  193. Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452CrossRefGoogle Scholar
  194. Suzuki Y, Chao SH, Zysk JR, Cheung WY (1985) Stimulation of calmodulin by cadmium ion. Arch Toxicol 57(3):205–211PubMedCrossRefGoogle Scholar
  195. Tabelin CB, Igarashi T (2009) Mechanisms of arsenic and lead release from hydrothermally altered rock. J Hazard Mater 169(1):980–990PubMedCrossRefGoogle Scholar
  196. Tang S, Wilke BM, Brooks RR (2001) Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32(5–6):895–905CrossRefGoogle Scholar
  197. Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9(1):87582CrossRefGoogle Scholar
  198. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165PubMedCrossRefGoogle Scholar
  199. Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31(2):641–647PubMedCrossRefGoogle Scholar
  200. Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Poll 47:189–2150CrossRefGoogle Scholar
  201. United Nation (2014) The world population situation in 2014: a concise report. New YorkGoogle Scholar
  202. Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157(4):1178–1185PubMedCrossRefGoogle Scholar
  203. Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41(1):91–128PubMedCrossRefGoogle Scholar
  204. Van Assche F, Clijsters H (1983) Multiple effects of heavy metal toxicity on photosynthesis. Effects of stress on photosynthesis. Springer, Netherlands, pp 371–382Google Scholar
  205. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206CrossRefGoogle Scholar
  206. Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52(2):103–115PubMedCrossRefGoogle Scholar
  207. Vassilev A, Yordanov I, Tsonev T (1997) Effects of Cd2+ on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34(2):293–302CrossRefGoogle Scholar
  208. Vassilev A, Lidon FC, Matos MD, Ramalho JC, Yordanov I (2002) Photosynthetic performance and content of some nutrients in cadmium-and copper-treated barley plants. J Plant Nutr 25(11):2343–2360CrossRefGoogle Scholar
  209. Vazques MD, Poschenrieder CH, Barcelo J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59(4):427–438CrossRefGoogle Scholar
  210. Vega FA, Andrade ML, Covelo EF (2010) Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. J Hazard Mater 174(1):522–533PubMedCrossRefGoogle Scholar
  211. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776PubMedCrossRefGoogle Scholar
  212. Verkleji JA (1993) The effects of heavy metal stress on higher plants and their use as biomonitors. Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New YorkGoogle Scholar
  213. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655CrossRefGoogle Scholar
  214. Vermette SJ, Bingham VG (1986) Trace elements in Frobisher Bay rainwater. Arctic 39(2):177–179CrossRefGoogle Scholar
  215. Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663PubMedCrossRefGoogle Scholar
  216. Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation and distribution in willow. J Environ Qual 33(5):1779–1785PubMedCrossRefGoogle Scholar
  217. Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 27(2):389–401PubMedCrossRefGoogle Scholar
  218. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Pritchard D (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27(4):786–792PubMedCrossRefGoogle Scholar
  219. Weihong XU, Wenyi LI, Jianping HE, Singh B, Xiong Z (2009) Effects of insoluble Zn, Cd, and EDTA on the growth, activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides. J Environ Sci 21(2):186–192CrossRefGoogle Scholar
  220. Woolhouse HW (1983) Physiological plant ecology III. In: Toxicity and tolerance in the responses of plants to metals. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  221. Xin WA, Yan-yu WU (1997) Behaviour property of heavy metals in soilrice system. Chin J Ecol 16(4):10–14Google Scholar
  222. Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21(2):147–153PubMedCrossRefGoogle Scholar
  223. Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43(5):1593–1600PubMedCrossRefGoogle Scholar
  224. Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Ele Med Biol 18(4):339–353CrossRefGoogle Scholar
  225. Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31(5):755–762PubMedCrossRefGoogle Scholar
  226. Zanthopolous N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium and lead in sheep geazing in North Greece. Bull Environ Contam Toxicol 62:691–699Google Scholar
  227. Zeid IM (2001) Responses of Phaseolus vulgaris chromium and cobalt treatments. Biol Plant 44:111–115CrossRefGoogle Scholar
  228. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120(3):849–858PubMedPubMedCentralCrossRefGoogle Scholar
  229. Zhang GP, Yao HG, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. J Zhejiang Univ Sci B B 7(7):565–571CrossRefGoogle Scholar
  230. Zheng Y, Wang L, Dixon MA (2004) Response to copper toxicity for three ornamental crops in solution culture. Hortic Sci 39(5):1116–1120Google Scholar
  231. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101(1):1–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mitul Kotecha
    • 1
    • 2
  • Medhavi
    • 1
  • Shivani Chaudhary
    • 1
  • Naina Marwa
    • 2
  • Farah Deeba
    • 2
  • Vivek Pandey
    • 2
  • Vishal Prasad
    • 1
  1. 1.Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Plant Ecology and Environmental Science DivisionCSIR-National Botanical Research Institute, Rana Pratap MargLucknowIndia

Personalised recommendations