A Survey of Control Charts for Simple Linear Profile Processes with Autocorrelation

  • Jyun-You ChiangEmail author
  • Hon Keung Tony Ng
  • Tzong-Ru Tsai
  • Yuhlong Lio
  • Ding-Geng Chen
Part of the ICSA Book Series in Statistics book series (ICSABSS)


In quality control, the quality of process or product can be characterized by a profile that defines as a functional relationship between a quality response variable and one or more explanatory variables. Many research works have been accomplished on statistical process control for simple linear profile with independent or autocorrelated observations. This chapter will serve as a review of some recent works on statistical quality control on autocorrelated simple linear profiles.


  1. 1.
    Borchers, H. W. (2018). pracma: Practical numerical math functions. R package version 2.1.8. Google Scholar
  2. 2.
    Castagliola, P., & Garcia Castellanos, J. V. (2005). Capability indices dedicated to the two quality characteristics case. Quality Technology and Quantitative Management, 2, 201–220.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chiang, J.-Y., Lio, Y. L., & Tsai, T.-R. (2017). MEWMA control chart and process capability indices for simple linear profiles with within-profile autocorrelation. Journal of Quality and Reliability Engineering International, 33, 1083–1094.CrossRefGoogle Scholar
  4. 4.
    Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., et al. (2018). mvtnorm: Multivariate normal and t distributions. R package version 1.0-8.
  5. 5.
    Gupta, S., Montgomery, D., & Woodall, W. (2006). Performance evaluation of two methods for online monitoring of linear calibration profiles. International Journal of Production Research, 44, 1927–1942.CrossRefGoogle Scholar
  6. 6.
    Jensen, W. A., Brich, J. B., & Wood, W. H. (2008). Monitoring correlation within linear profiles using mixed models. Journal of Quality Technology, 40, 167–183.CrossRefGoogle Scholar
  7. 7.
    Kang, L., & Albin, S. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32, 418–426.CrossRefGoogle Scholar
  8. 8.
    Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35, 317–328.CrossRefGoogle Scholar
  9. 9.
    Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34, 46–53.CrossRefGoogle Scholar
  10. 10.
    Mahmoud, M. A., Parker, P. A., Woodall, W. H., & Hawkins, D. M. (2007). A change point method for linear profile data. Quality and Reliability Engineering International, 23, 247–268.CrossRefGoogle Scholar
  11. 11.
    Mestek, O., Pavlik, J., & Suchánek, M. (1994). Multivariate control charts: Control charts for calibration curves. Fresenius’ Journal of Analytical Chemistry, 350, 344–351.CrossRefGoogle Scholar
  12. 12.
    Noorossana, R., Amiri, A., & Soleimani, P. (2008). On the monitoring of autocorrelated linear profiles. Communications in Statistics–Theory and Methods, 37, 425–442.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Noorossana, R., Amiri, A., Vaghefi, S. A., & Roghanian, E. (2004). Monitoring quality characteristics using linear profile. In Proceedings of the 3rd International Industrial Engineering Conference, Tehran, Iran.Google Scholar
  14. 14.
    Saghaei, A., Mehrjoo, M., & Amiri, A. (2009). A CUSUM-based method for monitoring simple linear profiles. The International Journal of Advanced Manufacturing Technology, 5, 1252–1260.CrossRefGoogle Scholar
  15. 15.
    Shahriari, H., Huebele, N. F., & Lawrence, F. P. (1995). A multivariate process capability vector. In Proceeding of the 4th Industrial Engineering Research Conference (pp. 304–309). Norcross: Institute of Industrial Engineers.Google Scholar
  16. 16.
    Soleimani, P., Noorossana, R., & Amiri, A. (2009). Simple linear profiles monitoring in the presence of within profile autocorrelation. Computers & Industrial Engineering, 57, 1015–1021.CrossRefGoogle Scholar
  17. 17.
    Stover, F. S., & Brill, R. V. (1998). Statistical quality control applied to ion chromatography calibrations. Journal of Chromatography A, 804, 37–43.CrossRefGoogle Scholar
  18. 18.
    Woodall, W. H., Spitzner, D. J., Montgomery, D. C., & Gupta, S. (2004). Using control charts to monitor process and product quality profiles. Journal of Quality Technology, 36, 309–320.CrossRefGoogle Scholar
  19. 19.
    Zou, C., Zhang, Y., & Wang, Z. (2006). A control chart based on a change-point model for monitoring linear profiles. IIE Transactions, 38, 1093–1103.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jyun-You Chiang
    • 1
    Email author
  • Hon Keung Tony Ng
    • 2
  • Tzong-Ru Tsai
    • 3
  • Yuhlong Lio
    • 4
  • Ding-Geng Chen
    • 5
  1. 1.School of StatisticsSouthwestern University of Finance and EconomicsChengduChina
  2. 2.Department of Statistical ScienceSouthern Methodist UniversityDallasUSA
  3. 3.Department of StatisticsTamkang UniversityNew Taipei CityTaiwan
  4. 4.Department of Mathematical SciencesUniversity of South DakotaVermillionUSA
  5. 5.Department of StatisticsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations