Advertisement

Understanding the Factors Influencing Mobile Commerce Adoption by Traders in Developing Countries: Evidence from Ghana

  • Mercy Kwofie
  • Joseph Kwame AdjeiEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 558)

Abstract

The proliferation of wireless communication networks and relative reduction in cost of mobile devices have contributed to exponential growth in mobile device usage, and mobile commerce (m-commerce). Increasingly, mobile devices are being used in various ways by traders. This study analysed the factors that influence m-commerce adoption by traders and the role of Gender in mobile device adoption. The work extends the User Acceptance and Use of Information Technology (UTAUT2) model by highlighting the role of Trust. This study took place in one of the biggest markets in Ghana which is a hub for sale and distribution of agricultural and farm produce. The study analysed responses to a survey of two hundred and fifteen (215) traders using regression analysis. It was discovered that gender has moderating effect on Performance Expectancy, Facilitating Conditions, Habit, Price Value, and Trust and therefore, confirming the need for extension of the UTAUT2 model in relation to the study of adoption and use of m-commerce.

Keywords

UTAUT2 Micro trading m-commerce Adoption Gender 

References

  1. Abor, J., Quartey, P.: Issues in SME development in Ghana and South Africa. Int. Res. J. Finance Econ. 39(39), 215–228 (2010). ISSN 1450-2887Google Scholar
  2. Ajzen, I., Fishbein, M.: The Influence of Attitudes on Behavior, January 2005Google Scholar
  3. Alfahl, H., Sanzogni, L., Houghton, L.: Mobile commerce adoption in organizations: a literature review and future research directions. J. Electron. Commer. Organ. 10(2), 61–78 (2012).  https://doi.org/10.4018/jeco.2012040104CrossRefGoogle Scholar
  4. Alkhunaizan, A., Love, S.: What drives mobile commerce? An empirical evaluation of the revised UTAUT model. Int. J. Manag. Market. Acad. 2(1), 82–99 (2012)Google Scholar
  5. Alreck, P.L., Settle, R.B.: The survey research handbook (Ill) (1985)Google Scholar
  6. Alwahaishi, S., Snášel, V.: Consumers’ acceptance and use of information and communications technology: a UTAUT and flow based theoretical model. J. Technol. Manag. Innov. © 8(2), 61–73 (2013)CrossRefGoogle Scholar
  7. Anwar, M.: Mobile phones and the livelihoods of indonesian micro-entrepreneurs: evidence of capability expansion. In: Pacific Asia Conference on Information Systems (2015). http://aisel.aisnet.org/pacis2015/61
  8. Baron, R.M., Kenny, D.A.: The moderator-mediator variable distinction in social the moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51(6), 1173–1182 (1986)CrossRefGoogle Scholar
  9. Bigne, E., Ruiz, C., Sanz, S.: The impact of internet user shopping patterns and demographics on consumer mobile buying behaviour. J. Electron. Commer. Res. 6(3), 193–209. http://www.csulb.edu/journals/jecr/issues/20053/paper3.pdf
  10. Boadi, R.A., Boateng, R., Hinson, R., Opoku, R.A.: Preliminary insights into M-commerce adoption in Ghana. Inf. Dev. 23(4), 253–265 (2007).  https://doi.org/10.1177/0266666907084761CrossRefGoogle Scholar
  11. Boateng, R., Hinson, R., Galadima, R., Olumide, L.: Preliminary insights into the influence of mobile phones in micro-trading activities of market women in Nigeria. Inf. Dev. 30(1), 32–50 (2014).  https://doi.org/10.1177/0266666912473765CrossRefGoogle Scholar
  12. Celik H.: Customer online shopping anxiety within the Unified Theory of Acceptance and Use Technology (UTAUT) framework. APJML 28,2 278 Received 9 May 2015 Revised 14 August 2015 9 September 2015 Accepted 15 September 2015 Customer Online Shopping Anxiety within the Unified Theory of Acceptance and Use Technology (UTAUT) Framework Hakan Celik Department of Marketing, Bileci, 28 No. 2, 278–307 (2016).  https://doi.org/10.1108/APJML-05-2015-0077CrossRefGoogle Scholar
  13. Chang, J.M., Williams, J., Hurburg, G.: Mobile Commerce. IEEE, 14–15 June 2014 (2014). http://searchmobilecomputing.techtarget.com/definition/m-commerceCrossRefGoogle Scholar
  14. Cheng, T.C.E., Lam, D.Y.C., Yeung, A.C.L.: Adoption of internet banking: an empirical study in Hong Kong. Decis. Support Syst. 42(3), 1558–1572 (2006).  https://doi.org/10.1016/j.dss.2006.01.002CrossRefGoogle Scholar
  15. Chong, A.Y.-L., Ooi, K.-B., Bao, H.: Computers in human behavior: an empirical analysis of the determinants of 3G adoption in China. Comput. Hum. Behav. 28(2), 360–369 (2012)CrossRefGoogle Scholar
  16. Chong, A.Y., Chan, F.T.S., Ooi, K.: Predicting consumer decisions to adopt mobile commerce: cross country empirical examination between China and Malaysia. Decis. Support Syst. 53(1), 34–43 (2014).  https://doi.org/10.1016/j.dss.2011.12.001CrossRefGoogle Scholar
  17. Donner, J.: Research approaches to mobile use in the developing world: a review of the literature. Inf. Soc. 24(3) (2008).  https://doi.org/10.1080/01972240802019970CrossRefGoogle Scholar
  18. Dwivedi, Y.K., Wade, M.R., Schneberger, S.L. (eds.): Information systems theory: explaining and predicting our digital society, vol. 1. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-1-4419-6108-2Google Scholar
  19. Dwivedi, Y.K., Tamilmani, K., Williams, M.D., Lal, B.: Adoption of M-commerce: examining factors affecting intention and behaviour of Indian consumers. Int. J. Indian Cul. Bus. Manag. 8(3), 345–360 (2014)CrossRefGoogle Scholar
  20. Dwivedi, Y.K., Rana, N.P., Janssen, M., Lal, B., Williams, M.D., Clement, M.: An empirical validation of a unified model of electronic government adoption (UMEGA). Gov. Inf. Q. 34(2), 211–230 (2017)CrossRefGoogle Scholar
  21. Dwivedi, Y.K., Rana, N.P., Jeyaraj, A., Clement, M., Williams, M.D.: Re-examining the unified theory of acceptance and use of technology (UTAUT): towards a revised theoretical model. Inf. Syst. Front. 1–16 (2017b).  https://doi.org/10.1007/s10796-017-9774-y
  22. Esselaar, S., Stork, C., Ndiwalana, A., Deen-Swarray, M.: ICT usage and its impact on profitability of SMEs in 13 African countries. In: 14 African Universities and Research Institutions Working on ICT Policy and Regulation. ©, vol. 4, no. 1, pp. 87–100 (2007)Google Scholar
  23. Foon, S., Fah, B.C.Y.: Internet banking adoption in Kuala Lumpur: an application of UTAUT model. Int. J. Bus. Manag. 6(4), 161 (2011)Google Scholar
  24. Gao, T., Deng, Y.: A study on users’ acceptance behavior to mobile e-books application based on UTAUT model, pp. 376–379. IEEE (2012)Google Scholar
  25. Good, T., Qureshi, S.: Investigating the effects of micro-enterprise access and use of ICTs through a capability lens: implications for global development. In: Second Annual SIG GlobDev Workshop, pp. 1–28 (2009)Google Scholar
  26. Goodhue, D.L.: Consumer acceptance and use of information technology: adding consumption theory to UTAUT2. J. Assoc. Inf. Syst. 8(4), 219–222 (2007)Google Scholar
  27. Hair, J., Babin, B., Money, A., Samouel, P.: Essentials of Business Research Methods (2003)Google Scholar
  28. He, J., Freeman, L.: Are men more technology-oriented than women? The role of gender on the development of general computer self-efficacy of college students. J. Inf. Syst. Educ. 21(2), 203–213 (2010)Google Scholar
  29. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive field studies in information systems. MIS Q. 23(1), 67–94 (1999)CrossRefGoogle Scholar
  30. Hew, J.-J., Lee, V.-H., Ooi, K.-B., Wei, J.: What catalyses mobile apps usage intention: an empirical analysis. Emeraldinsight 115(7), 1269–1291 (2015)Google Scholar
  31. Högler, T., Stucky, W.: Exploring the critical success factors for mobile commerce. In: 2006 International Conference on Mobile Business, November 2015, p. 40 (2006).  https://doi.org/10.1109/ICMB.2006.15
  32. Harsono, I.L.D., Suryana, L.A.: Factors affecting the use behavior of social media using UTAUT 2 model. In: Proceedings of the First Asia-Pacific Conference on Global Business, Economics, Finance and Social Sciences, 1–3 August (2014)Google Scholar
  33. Jaradat, M.R.M., Al Rababaa, M.S.: Assessing key factor that influence on the acceptance of mobile commerce based on modified UTAUT. Int. J. Bus. Manag. 8(23), 102–112 (2013).  https://doi.org/10.5539/ijbm.v8n23p102
  34. Kalakota, R., Robinson, M.: M-Business: The Race to Mobility (2001)Google Scholar
  35. Khan, A., Woosley, J.M.: Comparison of contemporary technology acceptance models and evaluation of the best fit for health industry organizations. Int. J. Comput. Sci. Eng. Technol. 1(11), 709–717 (2011)Google Scholar
  36. Kim, S.S., Malhotra, N.K.: A longitudinal model of continued IS use: an integrative view of four mechanisms underlying postadoption phenomena. Manag. Sci. 51(5), 741–755 (2005).  https://doi.org/10.1287/mnsc.1040.0326CrossRefGoogle Scholar
  37. Kshetri, N., Dholakia, N.: Determinants of the global diffusion of B2B e-commerce. Electron. Markets 12(2), 1–10 (2002).  https://doi.org/10.1080/10196780252844562CrossRefGoogle Scholar
  38. Laudon, K.C., Traver, G.C.: E-Commerce: Business. Technology. Society, 12 edn (2016)Google Scholar
  39. Limayem, M., Hirt, S.G., Cheung, C.M.K.: How habit limits the predictive power of intention: the case study of information systems continuance. MIS Q. 31, 705–737 (2007)Google Scholar
  40. Pahnila, S., Sipeon, M., Zheng, X.: Integrating habit into UTAUT: the Chinese eBay case. Pac. Asia J. Assoc. Inf. Syst. 3(2), 1–30 (2011)Google Scholar
  41. Pallant, J.F., Tennant, A.: An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). Br. J. Clin. Psychol. 46(1), 1–18 (2007).  https://doi.org/10.1348/014466506X96931CrossRefGoogle Scholar
  42. Raman, A., Don, Y.: Preservice teachers’ acceptance of learning management software: an application of the UTAUT2 model. Int. Educ. Stud. 6(7), 157–164 (2013).  https://doi.org/10.5539/ies.v6n7p157CrossRefGoogle Scholar
  43. Rana, N.P., Dwivedi, Y.K., Lal, B., Williams, M.D., Clement, M.: Citizens’ adoption of an electronic government system: towards a unified view. Inf. Syst. Front. 19(3), 549–568 (2017)CrossRefGoogle Scholar
  44. Rana, N.P., Dwivedi, Y.K., Williams, M.D., Weerakkody, V.: Adoption of online public grievance redressal system in India: toward developing a unified view. Comput. Hum. Behav. 59, 265–282 (2016)CrossRefGoogle Scholar
  45. Saunders, M., Lewis, P., Thornhill, A.: Research Methods for Business Students. Business, vol. 5 (2009).  https://doi.org/10.1017/CBO9781107415324.004
  46. Sey, A.: “We use it different, different”: making sense of trends in mobile phone use in Ghana. New Media Soc. 13, 375–390 (2011).  https://doi.org/10.1177/1461444810393907CrossRefGoogle Scholar
  47. Shao, X., Siponen, M.: Consumer acceptance and use of information technology: Adding consumption theory to UTAUT2. In: Proceedings of SIGSVC Workshop. Sprouts: Working Papers on Information Systems, vol. 11, no. 157, pp. 11–157 (2011)Google Scholar
  48. Siau, K., Shen, Z.: Building customer trust in mobile commerce. Commun. ACM 46(4), 91–94 (2003).  https://doi.org/10.1145/641205.641211CrossRefGoogle Scholar
  49. Slade, E., Williams, M., Dwivedi, Y.: Extending UTAUT2 to explore consumer adoption of mobile payments. In: UK Academy for Information Systems Conference Proceedings, p. 36 (2013)Google Scholar
  50. Slade, E.L., Dwivedi, Y.K., Piercy, N.C., Williams, M.D.: Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychol. Market. 32(8), 860–873 (2015a)CrossRefGoogle Scholar
  51. Slade, E., Williams, M., Dwivedi, Y., Piercy, N.: Exploring consumer adoption of proximity mobile payments. J. Strateg. Market. 23(3), 209–223 (2015b)CrossRefGoogle Scholar
  52. Tan, G.W.H., Ooi, K.B., Chong, S.C., Hew, T.S.: NFC mobile credit card: the next frontier of mobile payment? Telematics Inform. 31(2), 292–307 (2014).  https://doi.org/10.1016/j.tele.2013.06.002CrossRefGoogle Scholar
  53. Tan, M., Teo, T.S.H.: Factors influencing the adoption of internet banking. J. Assoc. Inf. Syst. 1(1), 1–44 (2000).  https://doi.org/10.1016/j.elerap.2008.11.006CrossRefGoogle Scholar
  54. Tamilmani, K., Rana, N.P., Prakasam, N., Dwivedi, Y.K.: The battle of Brain vs. Heart: a literature review and meta-analysis of “hedonic motivation” use in UTAUT2. Int. J. Inf. Manag. 46, 222–235 (2019)CrossRefGoogle Scholar
  55. Tamilmani, K., Rana, N.P., Dwivedi, Y.K.: Use of ‘Habit’ is not a habit in understanding individual technology adoption: a review of UTAUT2 based empirical studies. In: Elbanna, A., Dwivedi, Y., Bunker, D., Wastell, D. (eds.) TDIT 2018, vol. 533, pp. 277–294. Springer, Cham (2018a).  https://doi.org/10.1007/978-3-030-04315-5_19Google Scholar
  56. Tamilmani, K., Rana, N.P., Dwivedi, Y.K., Sahu, G.P., Roderick, S.: Exploring the role of ‘Price Value’for understanding consumer adoption of technology: a review and metaanalysis of UTAUT2 based empirical studies. In: Twenty-Second Pacific Asia Conference on Information Systems, Japan (2018b)Google Scholar
  57. Tobbin, P.: Towards a model of adoption in mobile banking by the unbanked: a qualitative study. Emeraldinsight 14(5), 74–88 (2012).  https://doi.org/10.1108/14636691211256313CrossRefGoogle Scholar
  58. Venkatesh, V., Thong, J.Y.L., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012).  https://doi.org/10.1111/j.1540-4560.1981.tb02627.xCrossRefGoogle Scholar
  59. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. JSTOR 46(2), 186–204 (2000a)CrossRefGoogle Scholar
  60. Venkatesh, V., Morris, M.G.D., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003).  https://doi.org/10.2307/30036540CrossRefGoogle Scholar
  61. Wei, T.T., Marthandan, G., Chong, A.Y.-L., Ooi, K.-B., Arumugam, S.: What drives Malaysian m-commerce adoption? An empirical analysis. Ind. Manag. Data Syst. 109(3), 370–388 (2009).  https://doi.org/10.1108/02635570910939399CrossRefGoogle Scholar
  62. Dodds, W.B., Monroe, K.B., Grewal, D.: Effects of price, brand, and store information on buyers’ product evaluations. J. Market. Res. 18(307–319) (1991)Google Scholar
  63. Williams, M.D., Rana, N.P., Dwivedi, Y.K.: The unified theory of acceptance and use of technology (UTAUT): a literature review. J. Enterprise Inf. Manag. 28(3), 443–488 (2015)CrossRefGoogle Scholar
  64. Williams, M.D., Dwivedi, Y.K., Lal, B., Schwarz, A.: Contemporary trends and issues in IT adoption and diffusion research. J. Inf. Technol. 24(1), 1–10 (2009)CrossRefGoogle Scholar
  65. Wu, J.H., Wang, S.C.: What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Inf. Manag. 42(5), 719–729 (2005).  https://doi.org/10.1016/j.im.2004.07.001MathSciNetCrossRefGoogle Scholar
  66. Xu, X.: Understanding users’ continued use of online games : an application of UTAUT2 in social network games. In: The Sixth International Conferences on Advances in Multimedia, pp. 58–65 (2014)Google Scholar
  67. Yang, C.K.: Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics Inform. 22(3), 257–277 (2005).  https://doi.org/10.1016/j.tele.2004.11.003CrossRefGoogle Scholar
  68. Yang, S.: Understanding undergraduate students’ adoption of mobile learning model: a perspective of the extended UTAUT2. J. Convergence Inf. Technol. (JCIT) 8(10), 969–979 (2013).  https://doi.org/10.4156/jcit.vol8.issue10.118CrossRefGoogle Scholar
  69. Yoo, Y.: Computing in everyday life: a call for research on experiential computing. MIS Q. 34(2), 213–231 (2010)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.School of TechnologyGhana Institute of Management and Public AdministrationAccraGhana

Personalised recommendations