Advertisement

Mangroves: A Source of Existing and Alternative Livelihood

  • Abhijit Mitra
Chapter

Abstract

This chapter presents a frame work and guideline for initiating alternative livelihood development in coastal regions where existing livelihood practices are currently placing unsustainable pressure on the natural resource base. The Sundarban deltaic region is rich in natural resources, but inhabited by a very poor group of people. The population density is on the higher side due to which the pressure on natural resources is substantial. In this chapter the author has attempted to highlight few interesting alternative livelihood that are the output of cutting edge researches carried out by budding researchers with the aim to improve the economic profile of the deltaic lobe at the apex of Bay of Bengal.

Keywords

Alternative livelihood Natural resources Cutting edge research Economic profile 

References

  1. Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I., & Yarish, C. (2011a). Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology, 407, 190–199.CrossRefGoogle Scholar
  2. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H., & Sousa-Pinto, I. (2011b). IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312, 77–87.CrossRefGoogle Scholar
  3. Alamsjah, M. A. (2010). Producing new variety of Gracilaria sp. through cross breeding. Research Journal of Fisheries and Hydrobiology, 5, 159–167.Google Scholar
  4. Bhattacharyya, S. B., Panigrahi, A., Mitra, A., & Mukherjee, J. (2010). Effect of physico chemical variables on the growth and condition index of the rock oyster Saccostrea cucullata (Born) in the Sundarbans India. Indian Journal of Fisheries, 57(3), 13–17.Google Scholar
  5. Blanco, J. (1995). Cyst production in four species of neritic dinoflagellates. Journal of Plankton Research, 17, 165–182.CrossRefGoogle Scholar
  6. Buschmann, A. H., Hernández-González, M. C., & Varela, D. A. (2008). Seaweed future cultivation in Chile: Perspectives and challenges. International Journal of Environment and Pollution, 33, 432–456.CrossRefGoogle Scholar
  7. Caines, S., Manríquez-Hernández, J. A., Duston, J., Corey, P., & Garbary, D. J. (2014). Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. Journal of Applied Phycology, 26, 2173–2181.CrossRefGoogle Scholar
  8. Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S., & Mathieson, A. (1999). Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. Journal of Applied Phycology, 11, 463–472.CrossRefGoogle Scholar
  9. FAO (Food and Agriculture Organization of the United Nations). (2017). The state of world fisheries and aquaculture. Available from: http://www.fao.org/fishery/en. Accessed 23 Jan 2017.
  10. FAO. (2014). The state of world fisheries and aquaculture, 2014. Contributing to opportunities and challenges. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  11. FAO. (2016). The state of world fisheries and aquaculture, 2016. Contributing to food security and nutrition for all. Rome: FAO, 200 pp.Google Scholar
  12. Gorman, L., Kraemer, G. P., Yarish, C., Boo, S. M., & Kim, J. K. (2017). The effects of temperature on the growth and nitrogen content of Gracilaria vermiculophylla and Gracilaria tikvahiae from LIS, USA. Algae, 32, 57–66.CrossRefGoogle Scholar
  13. Granada, L., Sousa, N., Lopes, S., & Lemos, M. F. L. (2015). Is integrated multitrophic aquaculture the solution to the sectors major challenges? – a review. Reviews in Aquaculture, 6, 1–18.Google Scholar
  14. Guillemin, M. L., Faugeron, S., Destombe, C., Viard, F., Correa, J. A., & Valero, M. (2008). Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: How farming practices favor asexual reproduction and heterozygosity. Evolution, 62, 1500–1519.CrossRefGoogle Scholar
  15. Guiry, M.D. and Guiry, G.M. (2016). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, Available from: http://www.algaebase.org. Accessed 21 June 2016.
  16. Hanisak, M. D. (1987). Cultivation of Gracilaria and other macroalgae in Florida for energy production. In K. T. Bird & P. H. Benson (Eds.), Seaweed cultivation for renewable resources (pp. 191–218). New York: Elsevier.Google Scholar
  17. Hanisak, M. D., & Ryther, J. H. (1984). Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia, 116/117, 295–298.CrossRefGoogle Scholar
  18. Ishikawa, A., & Taniguchi, A. (1994). The role of cysts on population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. Marine Biology, 119, 39–44.CrossRefGoogle Scholar
  19. Johnson, R. B., Kim, J. K., Armbruster, L. C., & Yarish, C. (2014). Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: A preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds. Algae, 29, 227–235.CrossRefGoogle Scholar
  20. Kim, J. K., & Yarish, C. (2014). Development of a sustainable land-based Gracilaria cultivation system. Algae, 29, 217–225.CrossRefGoogle Scholar
  21. Kim, J. K., Duston, J., Corey, P., & Garbary, D. J. (2013). Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture, 414–415, 210–216.CrossRefGoogle Scholar
  22. Kim, J. K., Mao, Y., Kraemer, G., & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52–57.CrossRefGoogle Scholar
  23. Kim, J. K., Yarish, C., & Pereira, R. (2016). Tolerances to hypo-osmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia, 55, 257–264.CrossRefGoogle Scholar
  24. La Fond, L. C. (1954). On upwelling and sinking off the East Coast of India. Andhra University, Waltair, Memoirs in Oceanography, 49(1), 117–121.Google Scholar
  25. Loosanoff, V. L. (1962). Effects of turbidity on some larval and adult bivalves. Proceedings of the Gulf and Caribbean Fisheries Institute, 14, 80–95.Google Scholar
  26. Loosanoff, V. L., & Tommers, F. D. (1948). Effect of suspended silt and other substances on the rate of feeding oysters. Science, 107, 69–70.CrossRefGoogle Scholar
  27. Maestrini, S. Y., & GranCli, E. (1991). Environmental conditions and ecophysiological mechanisms which led to the 1988. Chrysochromul~na polylepis bloom: An hypothesis. Oceanologica Acta, 14, 397–413.Google Scholar
  28. Martínez-Porchas, M., Martínez-Córdova, L. R., Porchas-Cornejo, M. A., & López-Elías, J. A. (2010). Shrimp polyculture, a potentially profitable, sustainable, but uncommon aquacultural practice. Reviews in Aquaculture, 2, 73–78.Google Scholar
  29. Mehta, G. S. (2009). Inland fisheries development the way forward in West Bengal. Fishing Chimes, 29(7), 49–59.Google Scholar
  30. Mitra, A. (2000). Chapter 62: The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In C. Sheppard (Ed.), Seas at the millennium – an environmental evaluation (pp. 143–157). Coventry, UK: University of Warwick, Elsevier Science.Google Scholar
  31. Mitra, A., Banerjee, K., & Bhattacharyya, D. P. (2004). The other face of mangroves. Kolkata: Department of Environment, Govt. of West Bengal.Google Scholar
  32. Mitra, A., Bhattacharyya, S. B., Zaman, S., Banerjee, K., Sinha, S., & Raha, A. K. (2013). Carbon Content in Phytoplankton community of a tropical estuarine system. Annex. 2A.3. In A. Mitra (Ed.), Sensitivity of mangrove ecosystem to changing climate (pp. 85–103). New Delhi: Springer. ISBN: 9788132215080.CrossRefGoogle Scholar
  33. Mondal, K., Bhattacharyya, S. B., & Mitra, A. (2014a). Marine algae Enteromorpha intestinalis acts as a potential growth promoter in prawn feed. World Journal of Pharmaceutical Research, 3(5), 764–775.Google Scholar
  34. Mondal, K., Bhattacharyya, S. B., & Mitra, A. (2014b). Performances of green seaweed Enteromorpha intestinalis, salt-marsh grass Porteresia coarctata and mangrove litter as prawn feed ingredients. Research Journal of Animal,Veterinary and Fishery Sciences, 2(4), 17–26.Google Scholar
  35. Muhibbullah, M., Nurul Amin, S. M., & Chowdhury, A. T. (2005). Biol some physico-chemical parameters of soil and water of sundarban mangrove forest, Bangladesh. Journal of Biological Sciences, 5, 354–357.CrossRefGoogle Scholar
  36. Mukherjee, M., & Chakraborty, C. (2010). Scope for diversification of aquaculture in West Bengal, perspective plan and vision. Fishing Chimes, 29(10), 49–59.Google Scholar
  37. Nayar, K. N. (1987). Technology of oyster farming. In K. N. Nayar & S. Mahadevan (Eds.), Oyster culture status and prospects (Vol. 38, pp. 59–62). Cochin: Bulletin of Central Marine Fisheries Research Institute, Central Marine Fisheries Institute.Google Scholar
  38. Oliveira, E. C., Alveal, K., & Anderson, R. J. (2000). Mariculture of the agar-producing Gracilarioid red algae. Reviews in Fisheries Science and Aquaculture, 8, 345–377.CrossRefGoogle Scholar
  39. Patwary, M. U., & van der Meer, J. P. (1992). Genetic and breeding of cultivated seaweeds. Algae, 7, 281–318.Google Scholar
  40. Pereira, R., & Yarish, C. (2008). Mass production of marine macroalgae. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (Vol. 3, pp. 2236–2247). Oxford: Ecological Engineering. Elsevier.CrossRefGoogle Scholar
  41. Pereira, R., Yarish, C., & Critchley, A. T. (2013). Seaweed aquaculture for human foods in land based and IMTA systems. In R. A. Meyers (Ed.), Encyclopedia of sustainability science and technology (pp. 9109–9128). New York: Springer.Google Scholar
  42. Petrell, R. J., Mazhari Tabrisi, K., Harrison, P. J., & Druehl, L. D. (1993). Mathematical model of Laminaria production near a British Columbian salmon sea cage farm. Journal of Applied Phycology, 5, 1–14.CrossRefGoogle Scholar
  43. Pimentel, D., & Giampietro, M. (1994). Implications of the limited potential of technology to increase the carrying capacity of our planet. Human Ecology Review Summer/Autumn, 1, 248–251.Google Scholar
  44. Qi, Z., Liu, H., Li, B., Mao, Y., Jiang, Z., Zhang, J., & Fang, J. (2010). Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture, 300, 189–193.CrossRefGoogle Scholar
  45. Raikar, S. V., Ima, M., & Fujita, Y. (2001). Effects of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian Journal of Marine Science, 30, 98–104.Google Scholar
  46. Robinson, N., Winberg, P., & Kirkendale, L. (2013). Genetic improvement of macroalgae: Status to date and needs for the future. Journal of Applied Phycology, 25, 703–716.CrossRefGoogle Scholar
  47. Saha, S. B., Bhattacharyya, S. B., Mitra, A., & Choudhury, A. (2001). Quality of shrimp culture farm effluents and its impact on the receiving environment. Bangladesh Journal of Zoology, 29, 139–149.Google Scholar
  48. Sahoo, D., & Yarish, C. (2005). Mariculture of seaweeds. In R. A. Andersen (Ed.), Phycological methods: Algal culturing techniques (pp. 219–237). New York: Academic Press.Google Scholar
  49. Sahu, S., Jana, A. K., Sarkar, S., Dora, K. C., & Chowdhury, S. (2012). Econometric modelling of shrimp (Penaeus monodon, fabricius) farming at Nandigram-II block, Purba Medinipur district (W.B.). International Journal of Innovative Research in Science Engineering and Technology, 1(1), 121–124.CrossRefGoogle Scholar
  50. Singh, D., Buhmann, A. K., Flowers, T. J., et al. (2014). Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants.  https://doi.org/10.1093/aobpla/plu071.
  51. Smillie, C. (2015). Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol Indic. 56, 70–78.  https://doi.org/10.1016/j.ecolind.2015.03.010.CrossRefGoogle Scholar
  52. Song, S. H., Lee, C., Lee, S., et al. (2013). Analysis of microflora profile in Korean traditional nuruk. Journal of Microbiology and Biotechnology, 23, 40–46.CrossRefGoogle Scholar
  53. Strickland, R. (1983). The Fertile Fjord. Plankton in Puget Sound. Seattle: Washington Sea Grant.Google Scholar
  54. Weinberger, F., Buchholz, B., Karez, R., & Wahl, M. (2008). The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: Adaptation to brackish water may compensate for light limitation. Aquatic Biology, 3, 251–264.CrossRefGoogle Scholar
  55. Wu, H., Huo, Y., Han, F., Liu, Y., & He, P. (2015). Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Marine Pollution Bulletin, 91, 272–279.CrossRefGoogle Scholar
  56. Yokoya, N. S., Hirotaka, K., Obika, H., & Litamura, T. (1999). Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia, 398/399, 339–347.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations