Advertisement

Mangroves: A Potential Vegetation Against Sea Level Rise

  • Abhijit Mitra
Chapter

Abstract

Mangroves possess the ability to adapt to changes in sea level by growing upward in place, or by expanding landward or seaward. Mangroves produce peat from decaying litter fall and root growth and by trapping sediment from the ambient water. The process of building peat helps mangroves keep up with sea level rise. Mangroves can also expand their range despite sea level rise if the rate of sediment accretion is sufficient to keep up with sea level rise and if migration is not blocked by local conditions, such as infrastructure (e.g., roads, agricultural fields, dikes, urbanization, seawalls, and shipping channels) and topography (e.g., steep slopes). The potential of mangroves to combat sea level rise has been explained in this chapter with several regional case studies.

Keywords

Sea level Peat Sediment accretion Mangrove migration 

References

  1. Alongi, D. M. (1998). Coastal Ecosystem Processes. New York, USA: CRC Press, 419 pp.Google Scholar
  2. Antonov, J. I., Levitus, S., & Boyer, T. P. (2005). Steric variability of the world ocean, 1955–2003. Geophysical Research Letters, 32(12), L12602.  https://doi.org/10.1029/2005GL023112.CrossRefGoogle Scholar
  3. Banerjee, M. (1999). A report on the impact of Farakka barrage on the human fabric. Report submitted to World Commission on Dams on behalf of South Asian Network on Dams, Rivers and People (SANDRP), p. 29.Google Scholar
  4. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193.CrossRefGoogle Scholar
  5. Belperio, A. P. (1993). Land subsidence and sea-level rise in the Port-Adelaide estuary – implications for monitoring the greenhouse-effect. Australian Journal of Earth Sciences, 40(4), 359–368.CrossRefGoogle Scholar
  6. Blasco, F., Saenger, P., & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27, 167–178.CrossRefGoogle Scholar
  7. Cahoon, D. R. (2006). A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29, 889–898.CrossRefGoogle Scholar
  8. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. I). India: IUCN- The World Conservation Union.Google Scholar
  9. Chen, R., & Twilley, R. R. (1998). A gap dynamics model of mangrove forest development along the gradients of soil salinity and nutrient resources. Journal of Ecology, 86, 37–51.CrossRefGoogle Scholar
  10. Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., & Yan, J. (2009). The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379–388.CrossRefGoogle Scholar
  11. Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M., & Hannah, E. (2005). Snowfall-driven growth in East Antarctica ice sheet mitigates recent sea-level rise. Science, 308(5730), 1898–1901.CrossRefGoogle Scholar
  12. Dutton, I. M. (1992). Developing a management strategy for coastal wetlands. In C. Shafer & Y. Wang (Eds.), Island environment and coastal development (pp. 285–303). Nanjing (China): Nanjing University Press.Google Scholar
  13. Ellison, J. (1993). Mangrove retreat with rising sea level, Bermuda. Estuarine, Coastal and Shelf Science, 37, 75–87.CrossRefGoogle Scholar
  14. Ellison, J. C. (2000). How South Pacific mangroves may respond to predicted climate change and sea level rise, Chapter 15. In A. Gillespie & W. Burns (Eds.), Climate change in the South Pacific: Impacts and responses in Australia, New Zealand, and small islands states (pp. 289–301). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  15. Ellison, J. C., & Stoddart, D. R. (1991). Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research, 7, 151–165.Google Scholar
  16. Fagherazzi, S., FitzGerald, D. M., Fulweiler, R. W., Hughes, Z., Wiberg, P. L., McGlathery, K. J., Morris, J. T., Tolhurts, T. J., Deegan, L. A., & Johnson, D. S. (2013). Ecogeomorphology of salt marshes. Treatise on Geomorphology, 12, 182–200.CrossRefGoogle Scholar
  17. Fergusson, J. (1863). Recent changes in the delta of the Ganges. Quarterly Journal of the Geological Society, 19, 321–354.CrossRefGoogle Scholar
  18. Fujimoto, K., Miyagi, T., Kikuchi, T., & Kawana, T. (1996). Mangrove habitat formation and response to Holocene sea-level changes on Kosrae Island, Micronesia. Mangroves and Salt Marshes, 1(1), 47–57.CrossRefGoogle Scholar
  19. Gilman, E. (2004). Assessing and managing coastal ecosystem response to projected relative sea-level rise and climate change. Prepared for the International Research Foundation for Development Forum on small island developing states: Challenges, Prospects and International Cooperation for Sustainable Development. Contribution to the Barbados + 10 United Nations International Meeting on sustainable development of small island developing states, Port Louis, Mauritius, 10–14 January 2005.Google Scholar
  20. Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K., & Stephens, A. (2005). Runoff and mass balance of the Greenland ice sheet: 1958–2003. Journal of Geophysical Research, 110, D13108.CrossRefGoogle Scholar
  21. Hansen, J. (2006). Can we still avoid dangerous human-made climate change? Presentation on December 6, 2005 to the American Geophysical Union in San Francisco, California. Available at: http://www.columbia.edu/~jeh1/newschool-text-and-sides.pdf.
  22. Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., & Tausnev, N. (2005). Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435.  https://doi.org/10.1126/science.
  23. Hendry, M. D., & Digerfeldt, G. (1989). Palaeogeography and palaeoenvironments of a tropical coastal wetland and adjacent shelf during Holocene submergence, Jamaica. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 1–10.CrossRefGoogle Scholar
  24. Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Maskell, K., & Johnson, C. (Eds.). (2001). Climate change: The scientific basis. Published for the Intergovernmental Panel on Climate Change (p. 881). Cambridge/New York: Cambridge University Press.Google Scholar
  25. Howat, I., Joughin, I., & Scambos, T. (2007). Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 1559–1561.CrossRefGoogle Scholar
  26. Intergovernmental Panel on Climate Change (IPCC). (1997). The regional impacts of climate change: Assessment of vulnerability, Cambridge: Cambridge University Press, UK.Google Scholar
  27. IPCC (Intergovernmental Panel on Climate Change), Climate Change. (2007). Impacts, adaptation and vulnerability, contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (p. 976). Geneva, Cambridge: Cambridge University Press, UK.Google Scholar
  28. IPCC. (2001). The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press.Google Scholar
  29. Ishii, M., Kimoto, M., Sakamoto, K., & Iwasaki, S. I. (2006). Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. Journal of Oceanography, 62(2), 155–170.CrossRefGoogle Scholar
  30. Jones, M. (2002). Climate change - follow the mangroves and sea the rise. National Parks Journal, 46(6), 57–66.Google Scholar
  31. Kennish, M. J. (2002). Environmental threats and environmental future of estuaries. Environmental Conservation, 29(1), 78–107.CrossRefGoogle Scholar
  32. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., & Fagherazzi, S. (2016). Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6, 253–260.CrossRefGoogle Scholar
  33. Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., & Yunge, J. (2004). Greenland ice sheet: Increased coastal thinning. Geophysical Research Letters, 31, L24402.CrossRefGoogle Scholar
  34. Krauss, K. W., Allen, J. A., & Cahoon, D. R. (2003). Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science, 56, 251–259.CrossRefGoogle Scholar
  35. Lombard, A., Cazenave, A., Traon, P. Y. L., Guinehut, S., & Cecile, C. (2006). Perspectives on present-day sea level change: A tribute to Christial le Provost. Ocean Dynamics, 56(5–6), 445–451.CrossRefGoogle Scholar
  36. Manson, F. J., Loneragan, N. R., & Phinn, S. R. (2003). Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: A comparison of pattern metrics and change detection analyses based on aerial photographs. Estuarine, Coastal and Shelf Science, 57, 653–666.CrossRefGoogle Scholar
  37. Meier, M., Dyurgerov, M., Rick, U., O’Neel, S., Preffer, W., Anderson, R., Anderson, S., & Glazovsky, A. (2007). Glaciers dominate eustatic sea level rise in the 21st century. Science, 317, 1064–1067.CrossRefGoogle Scholar
  38. Menezes, M., Berger, U., & Worbes, M. (2003). Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetlands Ecology and Management, 11, 233–242.CrossRefGoogle Scholar
  39. Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and Burma. Geological Society of America Bulletin, 70, 319–342.CrossRefGoogle Scholar
  40. Ning, Z. H., Turner, R. E., Doyle, T., & Abdollahi, K. K. (2003). Integrated assessment of the climate change impacts on the Gulf Coast Region: Gulf Coast Climate Change Assessment Council (GCRCC) and Louisiana State University (LSU) Graphic Services, United States of America.Google Scholar
  41. Oldham, R. D. (1893). A manual of geology of India. Calcutta: Office of the Superintendent of Government printing, Calcutta, India.Google Scholar
  42. Overpeck, J., Otto- Bliesner, B., Miller, G., Muhs, D., Alley, R., & Kichl, J. (2006). Paleoclimatic evidence for future ice sheet instability and rapid sea level rise. Science, 311, 1064–1067.CrossRefGoogle Scholar
  43. Parkinson, R. W., DeLaune, R. D., & White, J. C. (1994). Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. Journal of Coastal Research, 10, 1077–1086.Google Scholar
  44. Pernetta, J. C. (1993). Mangrove forests, climate change and sea-level rise: Hydrological influences on community structure and survival, with examples from the Indo-West Pacific. A Marine Conservation and Development Report. Gland: IUCN. vii + 46 pp.Google Scholar
  45. Pontee, N. (2013). Defining coastal squeeze: A discussion. Ocean and Coastal Management, 84, 204–207.CrossRefGoogle Scholar
  46. Qasim, S. Z. (2004). Handbook of tropical estuarine biology (Vol. 131). New Delhi: Narendra Publishing House.Google Scholar
  47. Raha, A., Das, S., Banerjee, K., & Abhijit, M. (2002). Climate change impacts on Indian Sunderbans: A time series analysis (1924–2008). Biodiversity and Conservation, 3–21.Google Scholar
  48. Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986–990.CrossRefGoogle Scholar
  49. Semeniuk, V. (1994). Predicting the effect of sea-level rise on mangroves in Northwestern Australia. Journal of Coastal Research, 10(4), 1050–1076.Google Scholar
  50. Snedaker, S. C. (1995). Mangroves and climate change in the Florida and Caribbean region: Scenarios and hypotheses. Hydrobiologia, 295, 43–49.CrossRefGoogle Scholar
  51. Stroeve, J., Holland, M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.CrossRefGoogle Scholar
  52. United Nations Environment Programme (UNEP). (1994). Assessment and monitoring of climatic change impacts on mangrove ecosystems. UNEP Regional Seas Reports and Studies. Report no. 154.Google Scholar
  53. Velicogna, I., & Wahr, J. (2006). Measurements of time variable gravity show mass loss in Antarctica. Science, 311, 1754–1756.CrossRefGoogle Scholar
  54. Vicente, V. P. (1989). Ecological effects of sea-level rise and sea surface temperatures on mangroves, coral reefs, seagrass beds and sandy beaches of Puerto Rico: A preliminary evaluation. Science- Ciencia, 16, 27–39.Google Scholar
  55. Wadia, D. N. (1961). Geology of India, Mac Millan, London.Google Scholar
  56. Willis, J. K., Roemmich, D., & Cornuelle, B. (2004). International variability in upper-ocean heat content, temperature and thermosteric expansion on global scales. Journal of Geophysical Research, 109, C12036.  https://doi.org/10.1029/2003JC002260.CrossRefGoogle Scholar
  57. Woodroffe, C. D. (1990). The impact of sea-level rise on mangrove shoreline. Progress in Physical Geography, 14, 483–502.CrossRefGoogle Scholar
  58. Woodroffe, C. D. (1995). Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth Surface Processes and Landforms, 20(1), 65–85.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations