Advertisement

Mangroves: A Nutrient Retention Box

  • Abhijit Mitra
Chapter

Abstract

Mangroves are unique halophytes that are found at the land – sea interface and are well adapted to inundation with saline water. They are potential sinks of nutrients. The process of out-welling in the mangrove ecosystem results in the discharge of nutrients to the adjacent estuaries, bays and coastal waters. The nutrients originate in the mangrove ecosystem from both natural and anthropogenic sources. The natural sources include the falling of leaf litter, twigs, branches etc., which enhance during the period of cyclones and depressions. The artificial sources of nutrients in the mangrove ecosystem are (i) fertilizer run-off from the adjacent agricultural fields, (ii) aquacultural wastes, which contain nutrients released from unused feed, excreta of the culture species etc. Mangroves retain this huge quantum of nutrients in the system, and help in sustaining the food webs.

Keywords

Halophytes Mangrove litter Anthropogenic sources Food webs 

References

  1. Aerts, R. (1990). Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia, 84, 391–397.CrossRefGoogle Scholar
  2. Aerts, R. (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402–407.CrossRefGoogle Scholar
  3. Aerts, R., & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63–69.Google Scholar
  4. Alongi, D., Boto, M. K. G., & Robertson, A. I. (1992). Nitrogen and phosphorus cycles. In A. I. Robertson & D. M. Alongi (Eds.), Tropical mangrove ecosystems (pp. 251–292). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  5. Beadle, N. C. W. (1967). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, 992–1007.CrossRefGoogle Scholar
  6. Berendse, E., Oudhof, H., & Bol, J. (1987). A comparative study on nutrient cycling in wet heathland ecosystems. Oecologia, 74, 174–184.CrossRefGoogle Scholar
  7. Bhattacharyya, S. B., Roychowdhury, G., Zaman, S., Raha, A. K., Chakraborty, S., Bhattacharjee, A. K., & Mitra, A. (2013). Bioaccumulation of heavy metals in Indian white shrimp (Fenneropenaeus indicus: A time series analysis). International Journal of Life Sciences, Biotechnology and Pharma Research, 2(2), 97–113.Google Scholar
  8. Boto, K. G. (1982). Nutrient and organic fluxes in mangroves. In B. F. Clough (Ed.), Mangrove ecosystems of Australia: structure, function and management (pp. 239–257). Canberra, Australian Capital Territory: Australian Institute of Marine Science and Australian National University Press.Google Scholar
  9. Bryant, J. P., Chapin, F. S., III, & Klein, D. R. (1983). Carbon nutrient balance of boreal plants in relation to herbivory. Oikos, 40, 357–386.CrossRefGoogle Scholar
  10. Bunt, J. S. (1995). Continental scale pattern in mangrove litter fall. Hydrobiologia, 295(1–3), 135–140.CrossRefGoogle Scholar
  11. Davis, S. M. (1994). P inputs and vegetation sensitivity in the Everglades. In S. Davis & J. Ogden (Eds.), Everglades: The ecosystems and its restoration (pp. 357–378). Delray Beach, Florida: St. Lucie Press.CrossRefGoogle Scholar
  12. Feller, I. C. (1995). Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle L.). Ecological Monographs, 65, 477–505.CrossRefGoogle Scholar
  13. Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics, 8, 83–107.CrossRefGoogle Scholar
  14. Guerrero, G. R., Cervantes, D. R., & Jimenez, L. A. (1988). Nutrient variation during tidal cycle at a mouth of a coastal lagoon in the north-west of Mexico. Indian Journal of Marine Science, 17, 235–237.Google Scholar
  15. Hobbie, S. E. (1992). Effects of plant species on nutrient cycling. Trends in Ecology & Evolution, 7, 336–339.CrossRefGoogle Scholar
  16. Janzen, D. H. (1974). Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica, 6, 69–103.CrossRefGoogle Scholar
  17. Lara, R. J., & Dittmar, T. (1999). Nutrient dynamics in a mangrove creek (North Brazil) during the dry season, Mangrove Salt Marsh, 3, 185–195.Google Scholar
  18. Loveless, A. R. (1961). A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Annals of Botany (new series), 25(98), 168–184.CrossRefGoogle Scholar
  19. Medina, E., & Cuevas, E. (1989). Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. In J. Procter (Ed.), Mineral nutrients in tropical forest and savanna ecosystems (pp. 217–240). Oxford: Blackwell Scientific.Google Scholar
  20. Medina, E., Garcia, V., & Cuevas, E. (1990). Sclerophylly and oligotrophic environments: Relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the Upper Rio Negro region. Biotropica, 22(5), 1–64.Google Scholar
  21. Mitra, A. (1998). Status of coastal pollution in West Bengal with special reference to heavy metals. Journal of Indian Ocean Studies, 5(2), 135–138.Google Scholar
  22. Mitra, A. (2013). Sensitivity of mangrove ecosystem to changing climate (p. 323). New Delhi: Springer.  https://doi.org/10.1007/978-81-322-1509-7.CrossRefGoogle Scholar
  23. Mitra, A., & Choudhury, A. (1993). Seasonal variations in metal content in the gastropod Nerita articulata (Gould). Indian Journal of Environmental Health, 35(1), 31–35.Google Scholar
  24. Mitra, A., & Zaman, S. (2015). Blue carbon reservoir of the blue planet. New Delhi: Springer.  https://doi.org/10.1007/978-81-322-2107-4, ISBN 978-81-322-2106-7.CrossRefGoogle Scholar
  25. Mitra, A., Sengupta, K., & Banerjee, K. (2009). AILA and its impact on Gangetic delta. Environment Watch – A Newsletter of Indian Chamber of Commerce, 5–6.Google Scholar
  26. Nixon, S. W., Furnas, B. N., Lee, V., Marshall, N., Ong, I. E., Wong, C. H., Gong, W. K., & Sasekumar, A. (1984). The role of mangroves in the carbon and nutrient dynamics of Malaysia estuaries. In E. Soepandmo, A. N. Rao & D. J. Macintosh (Eds.). Proceedings of the asian symposium on mangrove environments: Research and management (pp. 496–513). Kuala Lumpur/Paris: University of Malaya/UNESCO.Google Scholar
  27. Ovalle, A. R. C., Rezende, C. E., Lacerda, L. D., & Silva, C. A. R. (1990). Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuarine, Coastal and Shelf Science, 31, 639–650.CrossRefGoogle Scholar
  28. Rivera-Monroy, V. H., Day, J. W., Twilley, R. R., Vera-Herrera, F., & Coronado-Molina, C. (1995). Flux of nitrogen and sediments in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuarine, Coastal and Shelf Science, 40, 139–160.CrossRefGoogle Scholar
  29. Shaver, G. R., & Melillo, J. M. (1984). Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology, 65, 1491–1510.CrossRefGoogle Scholar
  30. Twilley, R. R., Lugo, A. E., & Patterson-Zucca, C. (1986). Litter production and turnover in basin mangrove forests in southwest Florida. Ecology, 67, 670–683.CrossRefGoogle Scholar
  31. Valiela, I., & Teal, J. M. (1979). The nitrogen budget of a salt marsh ecosystem. Nature, 280, 652–656.CrossRefGoogle Scholar
  32. Valiela, I., Teal, J. M., Allen, S. D., Van Etten, R., Goehringer, D., & Volkmann, S. (1985). Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology, 89, 29–54.CrossRefGoogle Scholar
  33. WHO (World Health Organization). (2003). Looking back: Looking ahead: Five decades of challenges and achievements in environmental sanitation. Geneva: WHO World Health Organization.Google Scholar
  34. Wong, C. H. (1984). Mangrove aquatic nutrients. In J. E. Ong & W. K. Gong (Eds.), Productivity of mangrove ecosystems: Management implications (pp. 60–68). Penang: University Sains Malaysia.Google Scholar
  35. Zaman, S., & Mitra, A. (2014). Warning bell of climate change in the lower Gangetic delta. Research & Reviews: Journal of Ecology, 3(1), 41–45.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations