An Investigation of Material Perception in Virtual Environments

  • Mutian NiuEmail author
  • Cheng-Hung Lo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 973)


Material representation has always been an important part of visual effects in industrial design. And the judgment and recognition of product material often remain on the rendering effect drawings of the 2D display. However, it cannot fully intuitive performed, even sometimes cannot identify the specific material composition. As a device to simulate the real environment, VR strengthens people’s immersive experience by its 3D sense of space. The purpose of this study is to explore whether the material perception in VR is different from that in traditional 2D mode, and to determine whether VR can be used as a tool for users’ material perception in the future. The study found that VR provides the users with stereoscopic visual effects not seen on a 2D display. This feature seems to deepen the perception of material, which may facilitate the design of industrial products, furniture design, automotive interior and so on.


Material perception Virtual reality CAD modelling Rendering process 


  1. 1.
    Papagiannidis, S., See-To, E., Bourlakis, M.: Virtual test-driving: the impact of simulated products on purchase intention. J. Eta. Cons Serv. 21(5), 877–887 (2014)CrossRefGoogle Scholar
  2. 2.
    Bangbei, T., Gang, G., Jinjun, X.: Method for industry design material test and evaluation based on user visual and tactile experience. J. Mech. Eng. (2017)Google Scholar
  3. 3.
    Fleming, R.W.: Material perception. Ann. Rev. Vis. Sci. 3(1), 365–388 (2017)CrossRefGoogle Scholar
  4. 4.
    Ashby, M.F., Johnson, K.: Materials and Design: the Art and Science of Material Selection in Product Design, 2nd edn. Butterworth-Heinem, Oxford (2010)Google Scholar
  5. 5.
    Vangorp, P., Laurijssen, J., Dutre, P.: The influence of shape on the perception of material reflectance. ACM Trans. Gr. 26(3), 77 (2007)Google Scholar
  6. 6.
    Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A.: Comparison of deep neural networks to spatiotemporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016)CrossRefGoogle Scholar
  7. 7.
    Brainard, D.H.: Color constancy. In: Chalupa, L.M., Werner, J.S., (Eds.) The Visual Neurosciences, pp. 948–961. MIT Press (2004)Google Scholar
  8. 8.
    Obein, G., Knoblauch, K., Vienot, F.: Difference scaling of gloss: nonlinearity, binocularity, and constancy. J. Vis. 4(9), 711–720 (2004)CrossRefGoogle Scholar
  9. 9.
    Xiao, B., Brainard, D.H.: Color perception of 3D objects: constancy with respect to variation of surface gloss. In: Symposium on Applied Perception in Graphics and Visualisation, pp. 63–68. ACM (2006)Google Scholar
  10. 10.
    Ngan, A., Durand, F., Matudik, W.: Image-driven navigation of analytical BRDF models. In: Rendering Techniques, pp. 399–407 (2006)Google Scholar
  11. 11.
    Fleming, R.W., Jäkel, F., Maloney, L.T.: Visual perception of thick transparent materials. Psychol. Sci. 22(6), 812–820 (2011)CrossRefGoogle Scholar
  12. 12.
    Fleming, R.W., Bülthoff, H.H.: Low-level image cues in the perception of translucent materials. ACM Trans. Appl. Percept. 2(3), 346–382 (2005)CrossRefGoogle Scholar
  13. 13.
    Fleming, R.W., Dror, R.O., Adelson, E.H.: Real-world illumination and the perception of surface reflectance properties. J. Vis. 3(5), Article 3 (2003)CrossRefGoogle Scholar
  14. 14.
    Ho, Y.X., Landy, M.S., Maloney, L.T.: Conjoint measurement of gloss and surface texture. Psychol. Sci. 19(2), 196–204 (2008)CrossRefGoogle Scholar
  15. 15.
    Motoyoshi, I., Nishida, S., Sharan, L., Adelson, E.H.: Image statistics and the perception of surface qualities. Nature 447(7141), 206–209 (2007)CrossRefGoogle Scholar
  16. 16.
    Nishida, S., Shinya, M.: Use of image-based information in judgments of surface-reflectance properties. J. Opt. Soc. Am. 15(12), 2951–2965 (1999)CrossRefGoogle Scholar
  17. 17.
    Adelson, E.H.: On seeing stuff: the perception of materials by humans and machines. Human Vision & Electronic Imaging VI. International Society for Optics and Photonics (2001)Google Scholar
  18. 18.
    Wilson, C.J., Alessandro, S.: The use of virtual reality in psychology: a case study in visual perception. Comput. Math. Methods Med. 2015, 1–7 (2015)CrossRefGoogle Scholar
  19. 19.
    Xiang, F.U., Jian-Guo, J., Bao-Long, G.: A mechanical cad system based on virtual reality. Comput. Simul. 22(9), 161–166 (2005)Google Scholar
  20. 20.
    Sutcliffe, A., Gault, B., Shin, J.E.: Presence, memory and interaction in virtual environments. Int. J. Hum Comput Stud. 62(3), 307–327 (2005)CrossRefGoogle Scholar
  21. 21.
    Wann, J.P., Rushton, S., Mon-Williams, M.: Natural problems for stereoscopic depth perception in virtual environments. Vis. Res. 35(19), 2731–2736 (1995)CrossRefGoogle Scholar
  22. 22.
    Bonneel, N., Suied, C., Viaud-Delmon, I., Drettakis, G.: Bimodal perception of audio-visual material properties for virtual environments. ACM Trans. Appl. Percept. 7(1), 1–16 (2010)CrossRefGoogle Scholar
  23. 23.
    Fleming, R.W., Wiebel, C., Gegenfurtner, K.: Perceptual qualities and material classes. J. Vis. 13(8), 9 (2013)CrossRefGoogle Scholar
  24. 24.
    Berzhanskaya, J., Swaminathan, G., Beck, J., et al.: Remote effects of highlights on gloss perception. J. Percept. 34(5), 565–575 (2005)CrossRefGoogle Scholar
  25. 25.
    Sharan, L., Liu, C., Rosenholtz, R., et al.: Recognizing materials using perceptually inspired features. J. Int. J. Comput. Vis. 103(3), 348–371 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ikeuchi, K.: Numerical shape from shading and occluding contours in a single view (1979)Google Scholar
  27. 27.
    Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading. J. Comput. Vis. Gr. Image Process. 33(2), 174–208 (1985)CrossRefGoogle Scholar
  28. 28.
    Davis, B., Oken, E., Kennedy, S., Peterson, M.T., Su, S.W., King, D., et al.: 3d Studio Max 3 Magic (2000)Google Scholar
  29. 29.
    Qiu, W., Yuille, A.: Unrealcv: connecting computer vision to unreal engine. In: European Conference on Computer Vision, pp. 909–916. Springer, Cham (2016, October)Google Scholar
  30. 30.
    Collins, L.M., Dziak, J.J., Kugler, K.C., Trail, J.B.: Factorial experiments: efficient tools for evaluation of intervention components. Am. J. Prev. Med. 47(4), 498–504 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Xi’an Jiaotong-Liverpool UniversitySuzhouPeople’s Republic of China

Personalised recommendations