Modeling and Multi-objective Optimization of Insulating Lining Using Heuristic Technique “Exploration of Variable Codes (EVC)”

  • Umer AsgherEmail author
  • José Arzola-Ruiz
  • Riaz Ahmad
  • Osmel Martínez-Valdés
  • Yasar Ayaz
  • Sara Ali
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 953)


In this study, a conceptual mathematical model for the refractory and isolating lining of high temperature installations is deduced based on system constraints. Model’s decomposition leads to a bi-level objective having discrete optimization task with higher number of layers of compositions. Solutions are generated by a series of lower layers and multiple-objective optimization in accordance with a hierarchical participative structure. Graphical modelling of case study is developed with AutoLisp and OpenDCL for AutoCAD, which allows, for each refractory lining’s proposal generation. The user’s application and the associated graphic information among other possibilities allows to evaluate factors that could not be included in the model used for the solution of the original task. A novel heuristic approach is developed in the frame of the Integration Variables Method called “Exploration of Variables Codes (EVC)”. The results of EVC are numerically compared with the ones obtained using the elitist genetic algorithm approach “Non-dominated sorting genetic algorithm II (NSGA II)” for the same model’s structure. The optimized results demonstrate the higher solutions diversity, that facilitates the human-machine interaction procedures associated to develop the optimized solution.


Multiple criteria optimization Isolating lining Genetic algorithm (GA) Thermo mechanical modeling Human-machine interaction 


  1. 1.
    Ashby, M.F., Shercliff, H., Cebon, D.: Materials: Engineering, Science, Processing and Design, 2nd edn. Editorials Elsevier Ltd., Oxford (2010)Google Scholar
  2. 2.
    Ashby, M.F.: Materials Selection in Mechanical Design, 4th edn. Elsevier Ltd., Oxford (2011)Google Scholar
  3. 3.
    Martinez-Valdés, O., Arzola-Ruiz, J.: Selección óptima bajo criterios múltiples de materiales refractarios y aislantes para cazuelas metalúrgicas. Rev. int. métodos numér. cálc. diseño ing (RIMNI) 32(4), 252–260 (2016)CrossRefGoogle Scholar
  4. 4.
    Martinez-Valdés, O.: Optimización del revestimiento refractario para cazuelas metalúrgicas. MSc, Thesis, Holguín (2011)Google Scholar
  5. 5.
    Arzola-Ruiz, J.: Sistemas de Ingeniería, 2nd edn. Editorial Félix Varela, La Habana (2012)Google Scholar
  6. 6.
    Pinder, M.: Diseño de aislamiento térmico de hornos de cabina para el calentamiento de crudos. MSc, Thesis, El Tigre, Anzoátegui, Venezuela (2014)Google Scholar
  7. 7.
    Toledo, H.: Diseño óptimo de revestimiento para horno de reverbero de fusión de aluminio. MSc. Thesis, C. Bolívar, Venezuela (2014)Google Scholar
  8. 8.
    Arzola-Ruiz, J.: Análisis y Síntesis de Sistemas de ingeniería (2009).
  9. 9.
    DIDIER: Refractory Products and Services. Didier-Werke AG (1996)Google Scholar
  10. 10.
    Lu, J., Han, J., Hu, Y., Zhang, G.: Multi-level decision-making: a survey. Inf. Sci. 346, 463–487 (2016)CrossRefGoogle Scholar
  11. 11.
    Lu, J., Shi, C., Zhang, G.: On bi-level multi-follower decision making: general framework and solutions. Inf. Sci. 176, 1607–1627 (2006)CrossRefGoogle Scholar
  12. 12.
    Lu, J., Zhang, G., Montero, J., Garmendia, L.: Multi follower tri-level decision making models and system. IEEE Trans. Ind. Inf. 8, 974–985 (2006)CrossRefGoogle Scholar
  13. 13.
    Kalashnikov, V.V., Dempe, S., Pérez-Valdés, G.A., Kalashnykova, N.I., Camacho-Vallejo, J.F.: Bi-level programming and applications. Math. Prob. Eng. 181, 423, 442 (2015)Google Scholar
  14. 14.
    Glackin, J., Ecker, J.G., Kupferschmid, M.: Solving bi-level linear programs using multiple objective linear programming. J. Optim. Theory Appl. 140, 197–212 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wan, Z., Wang, G., Sun, B.: A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving non-linear bi-level programming problems. Swarm Evol. Comput. 8, 26–32 (2013)CrossRefGoogle Scholar
  16. 16.
    Angulo, E., Castillo, E., García-Ródena, R., Sánchez-Vizcaíno, J.: A continuous bi-level model for the expansion of highway networks. Comput. Oper. Res. 41, 262–276 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fontaine, P., Minner, S.: Benders decomposition for discrete–continuous linear bi-level problems with application to traffic network design. Transp. Res. Part B: Methodol. 70, 163–172 (2014)CrossRefGoogle Scholar
  18. 18.
    Nie, P.Y.: Dynamic discrete-time multi-leader–follower games with leaders in turn. Comput. Math Appl. 61, 2039–2043 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nishizaki, I., Sakawa, M.: Computational methods through genetic algorithms for obtaining Stackelberg solutions to two-level integer programming problems. Cybern. Syst. 36, 565–579 (2005)CrossRefGoogle Scholar
  20. 20.
    Bard, J.F.: Practical Bi-level Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  21. 21.
    Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bi-level programming. Optim. Lett. 1, 259–267 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, T., Hu, T., Guo, X., Chen, Z., Zheng, Y.: Solving high dimensional bi-level multiobjective programming problem using a hybrid particle swarm optimization algorithm with crossover operator. Knowl. Based Syst. 53, 13–19 (2013)CrossRefGoogle Scholar
  23. 23.
    Han, J., Lu, J., Hu, Y., Zhang, G.: Tri-level decision-making with multiple followers: model, algorithm and case study. Inf. Sci. 311, 182–204 (2016)CrossRefGoogle Scholar
  24. 24.
    Arzola-Ruiz, J.: Selección de Propuestas. Ed. Científico Técnica, La Habana (1989)Google Scholar
  25. 25.
    Martínez-Valdés, O., Arzola-Ruiz, J.: Operadores genéticos y de búsqueda aleatoria aplicados a tareas de selección de materiales de revestimiento para cucharas metalúrgicas. Revista de Metalurgia 53(3) (2017). Scholar
  26. 26.
    Martínez-Valdés, O., Arzola-Ruiz, J.: Exploration of variable codes algorithm for linings materials and its thickness selection of steel casting ladles. IEEE Latin Am. Trans. 15(8), 1528–1532 (2017)CrossRefGoogle Scholar
  27. 27.
    Augusto, O., Bennis, F., Caro, S.: A new method for decision making in multi-objective optimization problems. Pesquisa Operacional, Sociedade Brasileira de Pesquisa Operacional 32(3), 331–369 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Umer Asgher
    • 1
    Email author
  • José Arzola-Ruiz
    • 2
  • Riaz Ahmad
    • 1
    • 3
  • Osmel Martínez-Valdés
    • 4
  • Yasar Ayaz
    • 1
  • Sara Ali
    • 1
  1. 1.School of Mechanical and Manufacturing Engineering (SMME)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Studies Center of Mathematics for Technical Sciences (CEMAT)Technological University of HavanaHavanaCuba
  3. 3.Quality Assurance DirectorateNational University of Sciences and Technology (NUST)IslamabadPakistan
  4. 4.ACINOX IngenieríaMINDUSCotorroCuba

Personalised recommendations