Advertisement

Beyond Physical Domain, Understanding Workers Cognitive and Emotional Status to Enhance Worker Performance and Wellbeing

  • Juan-Manuel Belda-Lois
  • Carlos Planells Palop
  • Andrés Soler Valero
  • Nicolás Palomares Olivares
  • Purificación Castelló Merce
  • Consuelo Latorre-Sánchez
  • José Laparra-HernándezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 953)

Abstract

A methodology is presented to obtain measurements of the emotional states of workers from the measurement of Heart Rate Variability. Two methodologies have been used, one based on logistic regression and another using fuzzy trees. The results show promising results to have a single model for using through different persons to obtain an estimation of their internal arousal and valence. This estimation will be validated in a second stage with a measurement of the cognitive load of the worker.

Keywords

Human factors Emotional Cognitive Model 

References

  1. 1.
    Peruzzini, M., Grandi, F., Pellicciari, M.: Benchmarking of tools for user experience analysis in industry 4.0. Procedia Manuf. 11, 806–813 (2017)CrossRefGoogle Scholar
  2. 2.
    Scott, K.M., Lim, C., Al-Hamzawi, A., Alonso, J., Bruffaerts, R., Caldas-de-Almeida, J.M., Florescu, S., de Girolamo, G., Hu, C., de Jonge, P., Kawakami, N., Medina-Mora, M.E., Moskalewicz, J., Navarro-Mateu, F., O’Neill, S., Piazza, M., Posada-Villa, J., Torres, Y., Kessler, R.C.: Association of mental disorders with subsequent chronic physical conditions: world mental health surveys from 17 countries. J. Am. Med. Assoc. psychiatry 73(2), 150–158 (2016)Google Scholar
  3. 3.
    Gillen, M., Yen, I.H., Trupin, L., Swig, L., Rugulies, R., Mullen, K., Font, A., Burian, D., Ryan, G., Janowitz, I., Quinlan, P.A., Frank, J., Blanc, P.: The association of socioeconomic status and psychosocial and physical workplace factors with musculoskeletal injury in hospital workers. Am. J. Ind. Med. 50(4), 245–260 (2007)CrossRefGoogle Scholar
  4. 4.
    De Wind, A., Geuskens, G.A., Reeuwijk, K.G., Westerman, M.J., Ybema, J.F., Burdorf, A., Bongers, P.M., Van der Beek, A.J.: Pathways through which health influences early retirement: a qualitative study. BMC Public Health 13(1), 292 (2013)CrossRefGoogle Scholar
  5. 5.
    Engström, J., Johansson, E., Östlund, J.: Effects of visual and cognitive load in real and simulated motorway driving. Transp. Res. Part F: Traffic psychol. Behav. 8(2), 97–120 (2005)CrossRefGoogle Scholar
  6. 6.
    Fairclough, S.H., Venables, L., Tattersall, A.: The influence of task demand and learning on the psychophysiological response. Int. J. Psychophysiol. 56(2), 171–184 (2005)CrossRefGoogle Scholar
  7. 7.
    Fairclough, S.H., Venables, L.: Prediction of subjective states from psychophysiology: a multivariate approach. Biol. Psychol. 71(1), 100–110 (2006)CrossRefGoogle Scholar
  8. 8.
    Cohen, R.A., Waters, W.F.: Psychophysiological correlates of levels and stages of cognitive processing. Neuropsychologia 23(2), 243–256 (1985)CrossRefGoogle Scholar
  9. 9.
    Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14(2), 93–118 (2002)CrossRefGoogle Scholar
  10. 10.
    Jorgensen, R.S., Johnson, B.T., Kolodziej, M.E., Schreer, G.E.: Elevated blood pressure and personality: a meta-analytic review. Psychol. Bull. 120(2), 293 (1996)CrossRefGoogle Scholar
  11. 11.
    Wagner, J., Kim, J., Andre, E.: From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, pp. 940–943 (2005)Google Scholar
  12. 12.
    Appelhans, B., Luecken, L.: Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10, 229–240 (2006).  https://doi.org/10.1037/1089-2680.10.3.229CrossRefGoogle Scholar
  13. 13.
    Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (iaps): affective ratings of pictures and instruction manual. Technical Report A-8 (2008)Google Scholar
  14. 14.
    Pan, J., Tompkins, W.J.: A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–39 (1995).  https://doi.org/10.1016/0165-0114(94)00229-ZMathSciNetCrossRefGoogle Scholar
  17. 17.
    Nardelli, M., Greco, A., Valenza, G., Lanata, A., Bailón, R., Scilingo, E.P.: A multiclass arousal recognition using HRV nonlinear analysis and affective images. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 392–395, Honolulu, HI (2018)Google Scholar
  18. 18.
    Lench, H.C., Flores, S.A., Bench, S.W.: Discrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: a meta-analysis of experimental emotion elicitations. Psychol. Bull. 137, 834–855 (2011)CrossRefGoogle Scholar
  19. 19.
    Amstadter, A.: Emotion regulation and anxiety disorders. J. Anxiety. Disord. 22, 211–221 (2008)CrossRefGoogle Scholar
  20. 20.
    Kroenke, K., Spitzer, R.L., Williams, J.B.: The patient health questionnaire-2: validity of a two-item depression screener. Medicalcare 41(11), 1284–1292 (2003)Google Scholar
  21. 21.
    Lee, C.K., Yoo, S.K., Park, Y.J., Kim, N.H.: Using neural network to recognize human emotions from heart rate variability and skin resistance. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 5523–5525 (2005)Google Scholar
  22. 22.
    Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Compute. 42, 419–427 (2004)CrossRefGoogle Scholar
  23. 23.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  24. 24.
    Yu, S.N., Chen, S.F.: Emotion state identification based on heart rate variability and genetic algorithm (2015)Google Scholar
  25. 25.
    Luque-Casado, A., Perales, J.C., Cárdenas, D., Sanabria, D.: Heart rate variability and cognitive processing: the autonomic response to task demands. Biol. Psychol. 113, 83–90 (2016)CrossRefGoogle Scholar
  26. 26.
    Fan, Y., Lu, X., Li, D., & Liu, Y.: Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 445–450. ACM, October 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan-Manuel Belda-Lois
    • 1
  • Carlos Planells Palop
    • 1
  • Andrés Soler Valero
    • 1
  • Nicolás Palomares Olivares
    • 1
  • Purificación Castelló Merce
    • 1
  • Consuelo Latorre-Sánchez
    • 1
  • José Laparra-Hernández
    • 1
    Email author
  1. 1.Instituto de BiomecánicaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations