Advertisement

Multimodal fNIRS-EEG Classification Using Deep Learning Algorithms for Brain-Computer Interfaces Purposes

  • Marjan SaadatiEmail author
  • Jill Nelson
  • Hasan Ayaz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 953)

Abstract

The development of brain-computer interface (BCI) systems has received considerable attention from neuroscientists in recent years. BCIs can serve as a means of communication and for the restoration of motor function for patients with motor disorders. An essential part of the design of a BCI is correctly classifying the brain signals, historically collected using electroencephalography (EEG). However, recent studies have shown more robust classification results when EEG is combined with other neuroimaging methods such as fNIRS. Conventional classification methods need a priori feature preprocessing to train the model; such feature selection is a difficult and heavily studied problem. By using deep neural networks (DNN), in which recordings can be fed directly to the algorithm for training, we avoid the need for feature selection. In this study, the capabilities of DNNs in the classification of the hybrid EEG-fNIRS recordings of motor imagery (MI) and mental workload (MWL) tasks are investigated. A five-layer fully connected network is used for classification. This study makes use of two open-source meta-datasets collected at the Technische Universitat Berlin. The first dataset includes brain activity recordings of 26 healthy participants during three cognitive tasks: (1) n-back (0-, 2- and 3-back), (2) discrimination/selection response task (DSR) and (3) word generation (WG) tasks. The second dataset, motor imagery, consists of left and right-hand motor imagery tasks, each for 29 healthy participants. Our results show that classification accuracy is considerably higher for multimodal recordings when compared to EEG or fNIRS recordings alone. The proposed algorithm improves classification performance relative to a conventional support vector machine (SVM), reaching 90% average accuracy for both tasks, 8% higher than SVM performance. These results demonstrate the feasibility of achieving strong classification performance using multimodal BCI and deep learning.

Keywords

EEG fNIRS Deep neural networks Deep learning Brain imaging Brain computer interfaces Human machine interfaces 

References

  1. 1.
    Hong, K.-S. Naseer, N., Kim, Y.-H.: Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92 (2015)CrossRefGoogle Scholar
  2. 2.
    Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and Everyday Life, 1st edn. Elsevier, Academic Press, Cambridge (2019)Google Scholar
  3. 3.
    Ahn, S., Jun, S.C.: Multi-modal integration of EEG-fNIRS for brain-computer interfaces - current limitations and future directions. Front. Hum. Neurosci. 11, 503 (2017).  https://doi.org/10.3389/fnhum.2017.00503
  4. 4.
    Liu, Y., Ayaz, H., Shewokis, P.A.: Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain Comput. Interfaces 4, 1–11 (2017).  https://doi.org/10.1080/2326263x.2017.1304020CrossRefGoogle Scholar
  5. 5.
    Dehais, F., Duprès, A., Di Flumeri, G., Verdière, K.J., Borghini, G., Babiloni, F., Roy, R.N.: Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI. In: IEEE SMC (2018)Google Scholar
  6. 6.
    Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Lyu, S., Schalk, G., Ji, Q.: Deep feature learning using target priors with applications in ECOG signal decoding for BCI. In: IJCAI, pp. 1785–1791 (2013)Google Scholar
  8. 8.
    Hajinoroozi, M., Mao, Z., Jung, T.-P., Lin, C.-T., Huang, Y.: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Sig. Process. Image Commun. 47, 549–555 (2016)Google Scholar
  9. 9.
    An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.S., Han, K., Gromiha, M. (eds.) Intelligent Computing in Bioinformatics. Lecture Notes in Computer Science, vol. 8590 (2014)CrossRefGoogle Scholar
  10. 10.
    Hong, K.-S., Naseer, N., Kim, Y.-H.: Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92 (2015)CrossRefGoogle Scholar
  11. 11.
    Khan, M.J., Hong, M.J., Hong, K.-S.: Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8, 244 (2014)Google Scholar
  12. 12.
    Coyle, S.M., Ward, T.E., Markham, C.M.: Brain computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4(3), 219 (2007)CrossRefGoogle Scholar
  13. 13.
    Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K.-R., Blankertz, B.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59(1), 519–529 (2012)CrossRefGoogle Scholar
  14. 14.
    Abibullaev, B., An, J., Moon, J.-I.: Neural network classification of brain hemodynamic responses from four mental tasks. Int. J. Optomechatronics 5(4), 340–359 (2011)CrossRefGoogle Scholar
  15. 15.
    Hennrich, J., Her, C., Heger, D., Schultz, T.: Investigating deep learning for fNIRS based BCI. In: EMBC, pp. 2844–2847 (2015)Google Scholar
  16. 16.
    Nguyen, H.T., Ngo, C.Q., Truong Quang Dang, K., Vo, V.T.: Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy. Front. Hum. Neurosci. 7, 516 (2013)Google Scholar
  17. 17.
    Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.-W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-Hand motor execution. Neurophotonics 5 (2007)CrossRefGoogle Scholar
  18. 18.
    Croce, P., Zappasodi, F., Merla, A., Chiarelli, M.: Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data. J. Neural Eng. 14(4) (2017)CrossRefGoogle Scholar
  19. 19.
    Chiarelli, A.M., Zappasodi, F., Di Pompeo, F., Merla, A.: Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics 4(4) (2017)CrossRefGoogle Scholar
  20. 20.
    Ma, L., Zhang, L., Wang, L., Xu, M., Qi, H., Wan, B., Ming, D., Hu, Y.: A hybrid brain-computer interface combining the EEG and NIRS. In: 2012 IEEE International Conference Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 159–162 (2012)Google Scholar
  21. 21.
    Lee, M.-H., Fazli, S., Mehnert, J., Lee, S.-W.: Hybrid brain-computer interface based on EEG and NIRS modalities. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI), (2014)Google Scholar
  22. 22.
    Buccino, A.P., Keles, H.O., Omurtag, A.: Hybrid EEG-fNIRS asynchronous brain computer interface for multiple motor tasks. PloS ONE 11(1) (2016)CrossRefGoogle Scholar
  23. 23.
    Jirayucharoensak, S., Pan-Ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. (2014) Google Scholar
  24. 24.
    Shin, J., Von Luhmann, A., Kim, D.-W., Mehnert, J., Hwang, H.-J., Muller, K.-R.: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. In: Generic Research Data (2018)Google Scholar
  25. 25.
    Shin, J., Von Lhmann, A., Kim, D.-W., Mehnert, J., Hwang, H.-J., Muller, K.-R.: Simultaneous aquisition of EEG and NIRS during cognitive tasks for an open access dataset. In: Scientific Data, vol. 5 (2018)CrossRefGoogle Scholar
  26. 26.
    Pfurtscheller, G.: Functional brain imaging based on ERD/ERS. Vis. Res. 41(10–11), 1257–1260 (2001)CrossRefGoogle Scholar
  27. 27.
    Pourshafi, A., Saniei, M., Saeedian, A., Saadati, M.: Optimal reactive power compensation in a deregulated distribution network. In: 44th International Universities Power Engineering Conference (UPEC), pp. 1–6 (2009)Google Scholar
  28. 28.
    Neuper, C., Pfurtscheller, G.: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol. 43(1), 41–58 (2001)CrossRefGoogle Scholar
  29. 29.
    Saadati, M., Nelson, J.K.: Multiple transmitter localization using clustering by likelihood of transmitter proximity. In: 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1769–1773 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical and Computer EnginneringGeorge Mason UniversityFairfaxUSA
  2. 2.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA

Personalised recommendations