Electrodermal Activity in Ambulatory Settings: A Narrative Review of Literature

  • Yigit TopogluEmail author
  • Jan Watson
  • Rajneesh Suri
  • Hasan Ayaz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 953)


Electrodermal activity (EDA) is a portable, non-invasive and wearable sensor that measures skin electrical properties to track correlates of autonomic nervous system activity. Although EDA utilization is sparse compared to some other biomedical signals in ambulatory settings, it can be a potentially helpful adjunct tool in neuroergonomics studies and mobile brain and body research. This paper summarizes EDA physiological principles and methodology including data acquisition, signal processing, and data analysis approaches. In addition, use of EDA in diverse neuroergonomic application areas, such as in psychiatry, neurology, operator and consumer assessment, virtual reality and gaming have been outlined.


Electrodermal activity (EDA) Neuroergonomics Skin conductance Sweat gland activity Sympathetic activity 


  1. 1.
    Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and in Everyday Life. Elsevier, Academic Press, London (2019)Google Scholar
  2. 2.
    Curtin, A., Ayaz, H.: The age of neuroergonomics: towards ubiquitous and continuous measurement of brain function with fNIRS. Japan. Psychol. Res. 60(4), 374–386 (2018)CrossRefGoogle Scholar
  3. 3.
    Boucsein, W.: Electrodermal Activity, 2nd edn. Springer Science + Business Media, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Critchley, H.D.: Electrodermal responses: what happens in the brain. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 8, 132–142 (2002)Google Scholar
  5. 5.
    Carlson, N.R.: Physiology of Behavior. Allyn & Bacon, Boston (1994)Google Scholar
  6. 6.
    Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. Handb. Psychophysiol. 2, 200–223 (2007)Google Scholar
  7. 7.
    Wallin, B.G.: Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology 18, 470–476 (1981)CrossRefGoogle Scholar
  8. 8.
    Sharma, M., Kacker, S., Sharma, M.: A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2, 13–17 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Du, S.: Psychological Stress Level Detection Based on Electrodermal Activity (2017)Google Scholar
  10. 10.
    Handler, M., Nelson, R., Krapohl, D., Honts, C.: An EDA primer for polygraph examiners. Polygraph 39(2), 68–108 (2010)Google Scholar
  11. 11.
    Poh, M.-Z., Swenson, N.C., Picard, R.W.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 57, 1243–1252 (2010)CrossRefGoogle Scholar
  12. 12.
    Sharma, M., Kacker, S., Sharma, M.: A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2, 13–17 (2016)CrossRefGoogle Scholar
  13. 13.
    Posada-Quintero, H.F., Rood, R., Noh, Y., Burnham, K., Pennace, J., Chon, K.H.: Dry carbon/salt adhesive electrodes for recording electrodermal activity. Sens. Actuators, A 257, 84–91 (2017)CrossRefGoogle Scholar
  14. 14.
    Lanata, A., Valenza, G., Scilingo, E.P.: A novel EDA glove based on textile-integrated electrodes for affective computing. Med. Biol. Eng. Compu. 50, 1163–1172 (2012)CrossRefGoogle Scholar
  15. 15.
    Boucsein, W., Fowles, D.C., Grimnes, S., Ben-Shakhar, G., Roth, W.T., Dawson, M.E., Filion, D.L.: Publication recommendations for electrodermal measurements. Psychophysiology 49, 1017–1034 (2012)CrossRefGoogle Scholar
  16. 16.
    Cowley, B., Torniainen, J.: A short review and primer on electrodermal activity in human computer interaction applications (2016)Google Scholar
  17. 17.
    Bandara, D., Song, S., Hirshfield, L., Velipasalar, S.: A more complete picture of emotion using electrocardiogram and electrodermal activity to complement cognitive data. In: Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, pp. 287–298. Springer International Publishing (2016)Google Scholar
  18. 18.
    Dimberg, U.: Facial electromyographic reactions and autonomic activity to auditory stimuli. Biol. Psychol. 31, 137–147 (1990)CrossRefGoogle Scholar
  19. 19.
    Wobrock, D., Frey, J., Graeff, D., De La Rivière, J.-B., Castet, J., Lotte, F.: Continuous mental effort evaluation during 3d object manipulation tasks based on brain and physiological signals. In: Human-Computer Interaction, pp. 472–487. Springer (2015)Google Scholar
  20. 20.
    Holper, L., Scholkmann, F., Wolf, M.: The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behav. Brain Res. 270, 95–107 (2014)CrossRefGoogle Scholar
  21. 21.
    Aslanidis, T.: Electrodermal activity: applications in perioperative care (2014)Google Scholar
  22. 22.
    Ishchenko, A., Shev’ev, P.: Automated complex for multiparameter analysis of the galvanic skin response signal. Biomed. Eng. 23, 113–117 (1989)CrossRefGoogle Scholar
  23. 23.
    Cacioppo, J.T., Tassinary, L.G., Berntson, G.: Handbook of Psychophysiology. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  24. 24.
    Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 49, 1017–1034 (2013)Google Scholar
  25. 25.
    Bach, D.R., Friston, K.J., Dolan, R.J.: An improved algorithm for model-based analysis of evoked skin conductance responses. Biol. Psychol. 94, 490–497 (2013)CrossRefGoogle Scholar
  26. 26.
    Kelsey, M., Palumbo, R.V., Urbaneja, A., Akcakaya, M., Huang, J., Kleckner, I.R., Barrett, L.F., Quigley, K.S., Sejdic, E., Goodwin, M.S.: Artifact detection in electrodermal activity using sparse recovery. In: Compressive Sensing VI: From Diverse Modalities to Big Data Analytics, p. 102110D. International Society for Optics and Photonics (2017)Google Scholar
  27. 27.
    Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., Picard, R.: Automatic identification of artifacts in electrodermal activity data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1934–1937. IEEE (2015)Google Scholar
  28. 28.
    Chen, W., Jaques, N., Taylor, S., Sano, A., Fedor, S., Picard, R.W.: Wavelet-based motion artifact removal for electrodermal activity. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6223–6226. IEEE (2015)Google Scholar
  29. 29.
    Kelsey, M., Akcakaya, M., Kleckner, I.R., Palumbo, R.V., Barrett, L.F., Quigley, K.S., Goodwin, M.S.: Applications of sparse recovery and dictionary learning to enhance analysis of ambulatory electrodermal activity data. Biomed. Signal Process Control 40, 58–70 (2018)CrossRefGoogle Scholar
  30. 30.
    Greco, A., Valenza, G., Scilingo, E.P.: Advances in Electrodermal Activity Processing with Applications for Mental Health: From Heuristic Methods to Convex Optimization. Springer Publishing Company, Incorporated (2016)CrossRefGoogle Scholar
  31. 31.
    Bach, D.R., Flandin, G., Friston, K.J., Dolan, R.J.: Time-series analysis for rapid event-related skin conductance responses. J. Neurosci. Methods 184, 224–234 (2009)CrossRefGoogle Scholar
  32. 32.
    Alexander, D.M., Trengove, C., Johnston, P., Cooper, T., August, J., Gordon, E.: Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 146, 116–123 (2005)CrossRefGoogle Scholar
  33. 33.
    Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190, 80–91 (2010)CrossRefGoogle Scholar
  34. 34.
    Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47, 647–658 (2010)Google Scholar
  35. 35.
    Bach, D.R.: A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biol. Psychol. 103, 63–68 (2014)CrossRefGoogle Scholar
  36. 36.
    Greco, A., Valenza, G., Lanata, A., Scilingo, E.P., Citi, L.: cvxEDA: a convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63, 797–804 (2016)Google Scholar
  37. 37.
    Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D., Aljama-Corrales, T., Charleston-Villalobos, S., Chon, K.H.: Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann. Biomed. Eng. 44, 3124–3135 (2016)CrossRefGoogle Scholar
  38. 38.
    Ghaderyan, P., Abbasi, A.: An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations. Int. J. Psychophysiol. 110, 91–101 (2016)CrossRefGoogle Scholar
  39. 39.
    Ghaderyan, P., Abbasi, A., Ebrahimi, A.: Time-varying singular value decomposition analysis of electrodermal activity: a novel method of cognitive load estimation. Measurement 126, 102–109 (2018)CrossRefGoogle Scholar
  40. 40.
    Dehzangi, O., Rajendra, V., Taherisadr, M.: Wearable driver distraction identification on-the-road via continuous decomposition of galvanic skin responses. Sensors (Basel) 18, 503 (2018)CrossRefGoogle Scholar
  41. 41.
    Boyce, M.W., Goldberg, B., Moss, J.D.: Electrodermal activity analysis for training of military tactics. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1339–1343. Sage, Los Angeles, CA (2016)CrossRefGoogle Scholar
  42. 42.
    Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002)CrossRefGoogle Scholar
  43. 43.
    Friedman, D., Suji, K., Slater, M.: SuperDreamCity: an immersive virtual reality experience that responds to electrodermal activity. In: International Conference on Affective Computing and Intelligent Interaction, pp. 570–581. Springer (2007)Google Scholar
  44. 44.
    Toups, Z.O., Graeber, R., Kerne, A., Tassinary, L., Berry, S., Overby, K., Johnson, M.: A design for using physiological signals to affect team game play (2006)Google Scholar
  45. 45.
    Drachen, A., Nacke, L.E., Yannakakis, G., Pedersen, A.L.: Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, pp. 49–54. ACM (2010)Google Scholar
  46. 46.
    Egan, D., Brennan, S., Barrett, J., Qiao, Y., Timmerer, C., Murray, N.: An evaluation of Heart Rate and ElectroDermal Activity as an objective QoE evaluation method for immersive virtual reality environments. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)Google Scholar
  47. 47.
    Leiner, D., Fahr, A., Früh, H.: EDA positive change: a simple algorithm for electrodermal activity to measure general audience arousal during media exposure. Commun. Methods Measures 6, 237–250 (2012)CrossRefGoogle Scholar
  48. 48.
    Silveira, F., Eriksson, B., Sheth, A., Sheppard, A.: Predicting audience responses to movie content from electro-dermal activity signals (2013)Google Scholar
  49. 49.
    Wu, Y., Liu, Y., Su, N., Ma, S., Ou, W.: Predicting online shopping search satisfaction and user behaviors with electrodermal activity. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 855–856. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  50. 50.
    Holper, L., Wolf, M., Tobler, P.N.: Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. NeuroImage 84, 833–842 (2014)CrossRefGoogle Scholar
  51. 51.
    Carbon, C.-C., Michael, L., Leder, H.: Design evaluation by combination of repeated evaluation technique and measurement of electrodermal activity. Res. Eng. Design 19, 143–149 (2008)CrossRefGoogle Scholar
  52. 52.
    Greco, A., Valenza, G., Lanata, A., Rota, G., Scilingo, E.P.: Electrodermal activity in bipolar patients during affective elicitation. IEEE J. Biomed. Health Inf. 18, 1865–1873 (2014)CrossRefGoogle Scholar
  53. 53.
    Myslobodsky, M.S., Horesh, N.: Bilateral electrodermal activity depressive patients. Biol. Psychol. 6, 111–120 (1978)CrossRefGoogle Scholar
  54. 54.
    Fung, M.T., Raine, A., Loeber, R., Lynam, D.R., Steinhauer, S.R., Venables, P.H., Stouthamer-Loeber, M.: Reduced electrodermal activity in psychopathy-prone adolescents. J. Abnorm. Psychol. 114, 187–196 (2005)CrossRefGoogle Scholar
  55. 55.
    Zahn, T.P., Pickar, D., van Kammen, D.P.: Neuroleptic effects on autonomic activity in schizophrenia: between-group and within-subject paradigms and comparisons with controls. Schizophr. Bull. 27(3), 503–515 (2001)CrossRefGoogle Scholar
  56. 56.
    Hernandez, J., Morris, R.R., Picard, R.W.: Call center stress recognition with person-specific models. In: International Conference on Affective Computing and Intelligent Interaction, pp. 125–134. Springer (2011)Google Scholar
  57. 57.
    Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D., Chon, K.H.: Electrodermal activity is sensitive to cognitive stress under water. Front. Physiol. 8, 1128 (2018)CrossRefGoogle Scholar
  58. 58.
    Choi, J., Ahmed, B., Gutierrez-Osuna, R.: Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16, 279–286 (2012)CrossRefGoogle Scholar
  59. 59.
    Paananen, K., Vaununmaa, R., Holma, J., Karvonen, A., Kykyri, V.-L., Tsatsishvili, V., Kaartinen, J., Penttonen, M., Seikkula, J.: Electrodermal activity in couple therapy for intimate partner violence. Contemp. Fam. Ther. 40, 138–152 (2018)CrossRefGoogle Scholar
  60. 60.
    El-Sheikh, M., Keller, P.S., Erath, S.A.: Marital conflict and risk for child maladjustment over time: skin conductance level reactivity as a vulnerability factor. J. Abnorm. Child Psychol. 35, 715–727 (2007)CrossRefGoogle Scholar
  61. 61.
    Prince, E.B., Kim, E.S., Wall, C.A., Gisin, E., Goodwin, M.S., Simmons, E.S., Chawarska, K., Shic, F.: The relationship between autism symptoms and arousal level in toddlers with autism spectrum disorder, as measured by electrodermal activity. Autism 21, 504–508 (2017)CrossRefGoogle Scholar
  62. 62.
    Lane, S., Reynolds, S., Thacker, L.: Sensory over-responsivity and ADHD: differentiating using electrodermal responses, cortisol, and anxiety. Front. Integr. Neurosci. 4, 8 (2010)CrossRefGoogle Scholar
  63. 63.
    Stevens, S., Gruzelier, J.: Electrodermal activity to auditory stimuli in autistic, retarded, and normal children. J. Autism Dev. Disord. 14, 245–260 (1984)CrossRefGoogle Scholar
  64. 64.
    Poh, M.-Z., Loddenkemper, T., Swenson, N.C., Goyal, S., Madsen, J.R., Picard, R.W.: Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4415–4418. IEEE (2010)Google Scholar
  65. 65.
    Poh, M.Z., Loddenkemper, T., Reinsberger, C., Swenson, N.C., Goyal, S., Sabtala, M.C., Madsen, J.R., Picard, R.W.: Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 53, e93–e97 (2012)CrossRefGoogle Scholar
  66. 66.
    Rabavilas, A.D.: Electrodermal activity in low and high alexithymia neurotic patients. Psychother. Psychosom. 47, 101–104 (1987)CrossRefGoogle Scholar
  67. 67.
    Melander, C., Martinsson, J., Gustafsson, S.: Measuring electrodermal activity to improve the identification of agitation in individuals with dementia. Dement. Geriatr. Cogn. Disord. Extra 7, 430–439 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yigit Topoglu
    • 1
    Email author
  • Jan Watson
    • 1
  • Rajneesh Suri
    • 2
    • 3
  • Hasan Ayaz
    • 1
    • 3
    • 4
    • 5
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.LeBow College of Business, Drexel UniversityPhiladelphiaUSA
  3. 3.Drexel Business Solutions InstituteDrexel UniversityPhiladelphiaUSA
  4. 4.Department of Family and Community HealthUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Center for Injury Research and PreventionChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations