Human-Robot Cooperation in Manual Assembly – Interaction Concepts for the Future Workplace

  • Henning PetruckEmail author
  • Jochen Nelles
  • Marco Faber
  • Heiner Giese
  • Marius Geibel
  • Stefan Mostert
  • Alexander Mertens
  • Christopher Brandl
  • Verena Nitsch
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 962)


A human-robot cooperation workstation was developed and implemented as a platform for the examination of ergonomic design approaches and human-robot interaction in manual assembly. Various control modalities are being tested for this workstation, which enable a broad range of applications for human-robot interaction and control. These modalities include computer-generated control commands, gesture-based control using Myo Armbands, force-sensitive control by guiding the robot, motion tracking of the operator, and head-based gesture control using an Inertial Measurement Unit (IMU). The focus is on human-centered and ergonomic development of interaction patterns for these control modalities. This paper presents the multimodal interaction concept with the robot and allocates the presented modalities to suitable application areas.


Human-robot interaction Ergonomic workplace design Occupational safety 



The authors would like to thank the German Research Founda-tion DFG for the kind support within the Cluster of Excellence “Internet of Production (ID 390621612)”.


  1. 1.
    Masinga, P., Campbell, H., Trimble, J.A.: A framework for human collaborative robots, operations in South African automotive industry. In: IEEM 2015: 2015 IEEE International Conference on Industrial Engineering and Engineering Management: 6–9, December 2015, pp. 1494–1497. Singapore. IEEE, Piscataway, NJ (2015)Google Scholar
  2. 2.
    Audi AG.: Human robot cooperation: KLARA facilitates greater diversity of versions in production at Audi, Ingolstadt (2017)Google Scholar
  3. 3.
    DIN.: EN ISO 10218-2: Robots and robotic devices - safety requirements for industrial robots - Part 2: Robot systems and integration (2012)Google Scholar
  4. 4.
    DIN.: EN ISO 10218-1: Robots and robotic devices - safety requirements for industrial robots - Part 1: Robots (2012)Google Scholar
  5. 5.
    DIN.: ISO/TS 15066 Robots and robotic devices - collaborative robots (2017)Google Scholar
  6. 6.
    Gong, Z., Zhang, Y.: Robot signaling its intentions in human-robot teaming. In: HRI Workshop on Explainable Robotic Systems (2018)Google Scholar
  7. 7.
    Schmidt, L., Herrmann, R., Hegenberg, J., et al.: Evaluation einer 3-D-Gestensteuerung für einen mobilen Serviceroboter. Zeitschrift für Arbeitswissenschaft 68(3), 129–134 (2014). Scholar
  8. 8.
    Morais, G.D., Neves, L.C., Masiero, A.A., et al.: Application of Myo armband system to control a robot interface. In: Bahr, A., Abu Saleh, L., Schröder, D., et al. (eds.) Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies CMOS Technology, pp. 227–231. Technische Universität Hamburg Universitätsbibliothek; SCITEPRESS - Science and Technology Publications Lda, Hamburg, Setúbal (2016)Google Scholar
  9. 9.
    Sathiyanarayanan, M., Mulling, T., Nazir, B.: Controlling a robot using a wearable device (MYO). In: Int. J. Eng. Dev. Res. (2015)Google Scholar
  10. 10.
    Sanna, A., Lamberti, F., Paravati, G., et al.: A Kinect-based natural interface for quadrotor control. Entertainment Comput. 4(3), 179–186 (2013). Scholar
  11. 11.
    Stowers, J., Hayes, M., Bainbridge-Smith, A.: Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor. In: Gokasan, M. (ed.) IEEE International Conference on Mechatronics (ICM), 2011: 13–15, April 2011, Istanbul, Turkey; proceedings, pp. 358–362. IEEE, Piscataway, NJ (2011)CrossRefGoogle Scholar
  12. 12.
    Biao, M., Wensheng, X., Songlin, W.: A robot control system based on gesture recognition using Kinect. Indonesian J. Electr. Eng. Comput. Sci. 11(5) (2013).
  13. 13.
    Cheng, L., Sun, Q., Su, H., et al.: Design and implementation of human-robot interactive demonstration system based on Kinect. In: 24th Chinese Control and Decision Conference (CCDC), 2012: 23–25, May 2012, pp. 971–975. Taiyuan, China. IEEE, Piscataway, NJ (2012)Google Scholar
  14. 14.
    Du, G., Zhang, P., Mai, J., et al.: Markerless Kinect-based hand tracking for robot teleoperation. Int. J. Adv. Rob. Syst. 9(2), 36 (2012). Scholar
  15. 15.
    Song, W., Guo, X., Jiang, F., et al.: Teleoperation humanoid robot control system based on Kinect sensor. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012: 26–27, Aug. 2012, pp. 264–267. Nanchang, Jiangxi, China. IEEE, Piscataway, NJ (2012)Google Scholar
  16. 16.
    Li, C., Yang, C., Wan, J., et al.: Teleoperation control of Baxter robot using Kalman filter-based sensor fusion. Syst. Sci. Control Eng. 5(1), 156–167 (2017). Scholar
  17. 17.
    Rudigkeit, N., Gebhard, M., Gräser, A.: Towards a user-friendly AHRS-based human-machine interface for a semi-autonomous robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Assistive Robotics for Individuals with Disabilities: HRI Issues and Beyond (2014)Google Scholar
  18. 18.
    Jackowski, A., Gebhard, M., Graser, A.: A novel head gesture based interface for hands-free control of a robot. In: 2016 IEEE International Symposium on Medical Measurements and Applications, pp. 1–6. IEEE, Piscataway, NJ (2016)Google Scholar
  19. 19.
    Nelles, J., Kohns, S., Spies, J., et al.: Analysis of stress and strain in head based control of cooperative robots through tetraplegics. World Acad. Sci. Eng. Technol. Int. J. Med. Health, Biomed. Bioeng. Pharm. Eng. 11(1), 11–22Google Scholar
  20. 20.
    Nelles, J., Schmitz-Buhl, F., Spies, J., et al.: Altersdifferenzierte Evaluierung von Belastung und Beanspruchung bei der kopfbasierten Steuerung eines kooperierenden Roboters. In: Frühjahrskongress der Gesellschaft für Arbeitswissenschaft (2017)Google Scholar
  21. 21.
    Caccavale, R., Saveriano, M., Finzi, A., et al.: Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction. Auton. Robots 57(5), 469 (2018). Scholar
  22. 22.
    Ruffaldi, E., Di Fava, A., Loconsole, C., et al.: Vibrotactile feedback for aiding robot kinesthetic teaching of manipulation tasks. In: Human-robot collaboration and human assistance for an improved quality of life: IEEE RO-MAN 2017: 26th IEEE International Symposium on Robot and Human Interactive Communication, August 28-September 1, 2017, pp. 818–823. Lisbon, Portugal. IEEE, Piscataway, NJ (2017)Google Scholar
  23. 23.
    Kormushev, P., Calinon, S., Caldwell, D.G.: Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 25(5), 581–603 (2011). Scholar
  24. 24.
    Gammieri, L., Schumann, M., Pelliccia, L., et al.: Coupling of a redundant manipulator with a virtual reality environment to enhance human-robot cooperation. Procedia CIRP 62, 618–623 (2017). Scholar
  25. 25.
    Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: IEEE International Conference on Automation Science and Engineering (CASE), 2014: 18–22, Aug. 2014, pp. 339–344. Taipei, Taiwan. IEEE, Piscataway, NJ (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Henning Petruck
    • 1
    Email author
  • Jochen Nelles
    • 1
  • Marco Faber
    • 1
  • Heiner Giese
    • 2
  • Marius Geibel
    • 2
  • Stefan Mostert
    • 2
  • Alexander Mertens
    • 1
    • 3
  • Christopher Brandl
    • 1
    • 3
  • Verena Nitsch
    • 1
  1. 1.Institute of Industrial Engineering and Ergonomics of RWTH Aachen UniversityAachenGermany
  2. 2.Item Industrietechnik GmbHSolingenGermany
  3. 3.ACE – Aachen Consulting for Applied Industrial Engineering and Ergonomics UGAachenGermany

Personalised recommendations