Advertisement

Random Samplings Using Metropolis Hastings Algorithm

  • Miguel Arcos-ArgudoEmail author
  • Rodolfo Bojorque-Chasi
  • Andrea Plaza-Cordero
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 965)

Abstract

Random Walks Samplings are important method to analyze any kind of network; it allows knowing the network’s state any time, independently of the node from which the random walk starts. In this work, we have implemented a random walk of this type on a Markov Chain Network through Metropolis-Hastings Random Walks algorithm. This algorithm is an efficient method of sampling because it ensures that all nodes can be sampled with a uniform probability. We have determinate the required number of rounds of a random walk to ensuring the steady state of the network system. We concluded that, to determinate the correct number of rounds with which the system will find the steady state it is necessary start the random walk from different nodes, selected analytically, especially looking for nodes that may have random walks critics.

Keywords

Markov chains Small worlds Metropolis hastings Random walks Node sampling Random sampling 

References

  1. 1.
    Brugere, I., Gallagher, B., Berger-Wolf, T.Y.: Network Structure Inference, A Survey: Motivations, Methods, and Applications. arXiv preprint arXiv:1610.00782 (2016)
  2. 2.
    Baqer, M., Al Mutawah, K.: Random node sampling for energy efficient data collection in wireless sensor networks. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 467–472. IEEE (2013)Google Scholar
  3. 3.
    Blagus, N., Weiss, G., Šubelj, L.: Sampling node group structure of social and information networks. arXiv preprint arXiv:1405.3093 (2014)
  4. 4.
    Gadepally, V., Herr, T., Johnson, L., Milechin, L., Milosavljevic, M., Miller, B.A.: Sampling operations on big data. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 1515–1519. IEEE (2015)Google Scholar
  5. 5.
    Sevilla, A., Mozo, A., Anta, A.F.: Node sampling using random centrifugal walks. J. Comput. Sci. 11, 34–45 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arcos Argudo, M.: Comparative study between Kleinberg algorithm and biased selection algorithm for construction of small world networks. Computación y Sistemas 21(2), 325–336 (2017)CrossRefGoogle Scholar
  7. 7.
    Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)Google Scholar
  8. 8.
    Lovász, L.: Random walks on graphs. Combinatorics, Paul erdos is eighty 2, 1–46 (1993)Google Scholar
  9. 9.
    Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs (2002)Google Scholar
  10. 10.
    Woess, W.: Random Walks on Infinite Graphs and Groups, vol. 138. Cambridge University Press, Cambridge (2000)Google Scholar
  11. 11.
    Freund, J.E., Miller, I., Miller, M.: Estadística matemática con aplicaciones. Pearson Educación (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Miguel Arcos-Argudo
    • 1
    Email author
  • Rodolfo Bojorque-Chasi
    • 1
  • Andrea Plaza-Cordero
    • 1
  1. 1.Research Group on Artificial Intelligence and Assistance Technologies (GIIATA)Salesian Polytechnic UniversityCuencaEcuador

Personalised recommendations