Advertisement

Transitions Toward Digital Resources: Change, Invariance, and Orchestration

  • Paul Drijvers
  • Verônica GitiranaEmail author
  • John Monaghan
  • Samet Okumus
  • Sylvaine Besnier
  • Cerenus Pfeiffer
  • Christian Mercat
  • Amanda Thomas
  • Danilo Christo
  • Franck Bellemain
  • Eleonora Faggiano
  • José Orozco-Santiago
  • Mdutshekelwa Ndlovu
  • Marianne van Dijke-Droogers
  • Rogério da Silva Ignácio
  • Osama Swidan
  • Pedro Lealdino Filho
  • Rafael Marinho de Albuquerque
  • Said Hadjerrouit
  • Tuğçe Kozaklı Ülger
  • Anders Støle Fidje
  • Elisabete Cunha
  • Freddy Yesid Villamizar Araque
  • Gael Nongni
  • Sonia Igliori
  • Elena Naftaliev
  • Giorgos Psycharis
  • Tiphaine Carton
  • Charlotte Krog Skott
  • Jorge Gaona
  • Rosilângela Lucena
  • José Vieira do Nascimento Júnior
  • Ricardo Tibúrcio
  • Anderson Rodrigues
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

This chapter reports on the work of Working Group 4 and focuses on the integration of digital resources into mathematics teaching and learning practices. There are five central sections, focusing on, instrumental genesis, instrumental orchestration, the documentational approach to didactics, digital resources and teacher education, and the design of learning environments with the use of digital resources. A range of constructs and theoretical approaches are covered in these five sections, and the opening section comments on construct validity and issues in “networking” theoretical frameworks. The chapter can be viewed as a literature review which surveys past and present (at the time of writing) scholarship with an eye to possible future research. The chapter is extensive in several dimensions: a large range of digital resources and applications are considered; the subjects using digital resources are not just teachers but also students, student teachers and student teacher educators. Issues raised in the sections include individual and collective use of resources, the adaptation of these resources for specific learning goals and to prepare (pre- and in-service) teachers for the use of digital resources.

Keywords

Digital resources instrumental genesis instrumental orchestration documentational approach to didactics teacher education design of learning environments 

References

  1. Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3(3), 205–224.CrossRefGoogle Scholar
  2. Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.CrossRefGoogle Scholar
  3. Artigue, M. (1990). Ingénierie didactique. Recherches en didactique des mathématiques, 9(3), 281–307.Google Scholar
  4. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  5. Artzt, A. F., Armour-Thomas, E., Curcio, C., & Gurl, T. J. (2015). Becoming a reflective mathematics teacher: A guide for observations and self-assessment (3rd ed.). New York: Routledge.CrossRefGoogle Scholar
  6. Assis, C., Gitirana, V., & Trouche, L. (2018). The metamorphosis of resource systems of prospective teacher: From studying to teaching. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 39–42). Lyon: ENS de Lyon, Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563
  7. Assude, T. (2007). Teacher’s practices and degree of ICT integration. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 1339–1348). Larnaca: University of Cyprus and ERME.Google Scholar
  8. Assude, T., Buteau, C., & Forgasz, H. (2010). Factors influencing implementation of technology-rich mathematics curriculum and practices. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology – Rethinking the terrain. The 17th ICMI study (pp. 405–419). New York: Springer.Google Scholar
  9. Atkinson, B. (2012). Rethinking reflection: Teachers’ critiques. The Teacher Educator, 47, 175–194.CrossRefGoogle Scholar
  10. Bailleul, M., & Thémines, J. F. (2013). L’ingénierie de formation : formalisation d’expériences en formation d’enseignants. In A. Vergnioux (Ed.),. Traité d’ingénierie de la formation L’Harmattan (pp. 85–112). Paris.Google Scholar
  11. Bakker, A. (2004). Design research in statistics education: On symbolizing and computer tools. Utrecht: CD Beta Press.Google Scholar
  12. Balacheff, N. (1994). La transposition informatique. Note sur un nouveau problème pour la didactique. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de Didactique des Mathématiques en France (pp. 364–370). Grenoble: La Pensée Sauvage.Google Scholar
  13. Barbosa, A., & Vale, I. (2018). Math trails: A resource for teaching and learning. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 183–186). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  14. Barth-Cohen, L. A., Little, A. J., & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29(2), 83–101.CrossRefGoogle Scholar
  15. Bellemain, F., Tiburcio, R., Silva, C., & Gitirana, V. (2016). Function Studium software. Recife-PE: LEMATEC Research Group.Google Scholar
  16. Bellemain, F., Rodrigues, A., & Rodrigues, A. D. (2018). LEMATEC Studium: A support resource for teaching mathematics. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 255–258). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  17. Ben-Zvi, D. (2006). Scaffolding students’ informal inference and argumentation. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics (CD-ROM). Voorburg: International Statistical Institute.Google Scholar
  18. Besnier, S. (2016). Le travail documentaire des professeurs à l’épreuve des ressources technologiques : Le cas de l’enseignement du nombre à l’école maternelle. PhD. Brest: Université de Bretagne Occidentale, https://tel.archives-ouvertes.fr/tel-01397586/document
  19. Besnier, S. (2018). Orchestrations at kindergarten: Articulation between manipulatives and digital resources. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 259–262). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  20. Besnier, S., & Gueudet, G. (2016). Usages de ressources numériques pour l’enseignement des mathématiques en maternelle : orchestrations et documents. Perspectivas em Educação Matemática, 9(21), 978–1003.Google Scholar
  21. Billington, M. (2009). Establishing didactical praxeologies: teachers using digital tools in upper secondary mathematics classrooms. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), Proceedings of the Sixth Congress of European Research in Mathematics Education (pp. 1330–1339). Lyon, France: ENS de Lyon.Google Scholar
  22. Bozkurt, G., & Ruthven, K. (2017). Classroom-based professional expertise: A mathematics teacher’s practice with technology. Educational Studies in Mathematics, 94(3), 309–328.CrossRefGoogle Scholar
  23. Brousseau, G. (1997). Theory of didactical situations in mathematics. Didactique des mathématiques, 1970–1990 (edited and translated by N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield). Dordrecht, NL. Kluwer Academic Publishers.Google Scholar
  24. Brown, M. W. (2009). The teacher-tool relationship: Theorizing the design and use of curriculum materials. In J. T. Remillard, B. A. Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematics teachers at work: Connecting curriculum materials and classroom instruction (pp. 17–36). New York: Routledge.Google Scholar
  25. Carlsen, M., Erfjord, I., Hundeland, P. S., & Monaghan, J. (2016). Kindergarten teachers’ orchestration of mathematical activities afforded by technology: Agency and mediation. Educational Studies in Mathematics, 93(1), 1–17.CrossRefGoogle Scholar
  26. Carton, T. (2018a). From digital “bricolage” to the start of collective work – What influences do secondary teachers non-formal digital practices have on their documentation work? In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 263–266). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  27. Carton, T. (2018b). Case study: How teachers’ everyday creativity can be associated with an edtech player’s strategies. Présenté au XXIe Congrès de la SFSIC – Création, créativité et médiations, Saint-Denis, 13-15 juin 2018.Google Scholar
  28. Cayton, C., Hollebrands, K., Okumuş, S., & Boehm, E. (2017). Pivotal teaching moments in technology-intensive secondary geometry classrooms. Journal of Mathematics Teacher Education, 20(1), 75–100.CrossRefGoogle Scholar
  29. Chevallard, Y. (2002). Organiser l’étude. 1. Structures & fonctions. Actes de la XIe école d’été de didactique des mathématiques (pp. 3–32). La Pensée Sauvage : Grenoble. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Organiser_l_etude_1.pdf
  30. Choppin, J. (2018). Exploring teachers’ design processes with different curriculum programs. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 267–270). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  31. Cuevas, C. A., Villamizar, F. Y., & Martínez, A. (2017). Aplicaciones de la tecnología digital para activiDADes didácticas que promuevan una mejor comprensión del tono como cualiDAD del sonido para cursos tradicionales de física en el nivel básico. Enseñanza de las Ciencias, 35(3), 129–150.Google Scholar
  32. Cunha, E. (2018). Digital resources: Origami folding instructions as lever to mobilize geometric concepts to solve problems. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Ed.), Proceeedings of the Re(s)sources 2018 International Conference (pp. 271–274). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563
  33. Deblois, L. (2012). De l’ancien élève à l’enseignant. Quel parecours. In J. Proulx, C. Corriveau, & H. Squalli (Eds.), Formation mathématique pour l’enseignement des mathématiques (pp. 313–320). Québec: Presses de l’Université du Québec.Google Scholar
  34. Dick, T., & Burrill, G. (2016). Design and implementation principles for dynamic interactive mathematics technologies. In M. Niess, S. Driskell, & K. Hollebrands (Eds.), Handbook of research on transforming mathematics teacher education in the digital age (pp. 23–52). Hershey: IGI Global Publishers.CrossRefGoogle Scholar
  35. Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics. Cases and perspectives (Vol. 2, pp. 363–392). Charlotte: Information Age.Google Scholar
  36. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. P. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.CrossRefGoogle Scholar
  37. Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013a). One episode, two lenses. Educational Studies in Mathematics, 82(1), 23–49.CrossRefGoogle Scholar
  38. Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013b). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM – Mathematics Education, 45(7), 987–1001.CrossRefGoogle Scholar
  39. Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de didactique et de sciences cognitives, 5(1), 37–65.Google Scholar
  40. Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.Google Scholar
  41. Erfjord, I. (2011). Teachers’ initial orchestration of students’ dynamic geometry software use: Consequences for students’ opportunities to learn mathematics. Technology, Knowledge and Learning, 16(1), 35–54.Google Scholar
  42. Essonnier, N. K. (2018). Étude de la conception collaborative de ressources numériques mathématiques au sein d’une communauté d’intérêt. PhD. Lyon: Université de Lyon, https://tel.archives-ouvertes.fr/tel-01868226/document
  43. Essonnier, N., & Trgalová, J. (2018). Collaborative design of digital resources: Role of designers’ resource systems and professional knowledge. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 61–64). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  44. Essonnier, N., Kynigos, C., Trgalová, J., & Daskolia, M. (2018). Role of context in social creativity for the design of digital resources. In L. Fan, L. Trouche, S. Rezat, C. Qi, & J. Visnovska (Eds.), Research on mathematics textbooks and Teachers’ resources: Advances and issues (pp. 215–233). Cham: Springer.CrossRefGoogle Scholar
  45. Faggiano, E., Montone, A., & Mariotti, M. A. (2016). Creating a synergy between manipulatives and virtual artefacts to conceptualize axial symmetry at Primary School. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedigns of the 40th conference of the international group for the Psychology of Mathematics Education: PME 40 (Vol. 2, pp. 235–242). Szeged: International Group for the Psychology of Mathematics Education.Google Scholar
  46. Farrell, A. (1996). Roles and behaviors in technology-integrated precalculus classrooms. Journal of Mathematical Behavior, 15(1), 35–53.CrossRefGoogle Scholar
  47. Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: Actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92(1), 1–19.CrossRefGoogle Scholar
  48. Fidje, A. S. (2018). Orchestrating the use of student-produced videos in mathematics teaching. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 275–278). Lyon: ENS de Lyon. In Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.
  49. Fischer, G. (2001). Communities of interest: Learning through the interaction of multiple knowledge systems. In S. Bjørnestad, R. Moe, A. Mørch, & A. Opdahl (Eds.), Proceedings of the 24th Information Systems Research Seminar in Scandinavia (pp. 1–14). Bergen: The University of BergenGoogle Scholar
  50. Gibson, J. J. (1977). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  51. Gueudet, G., & Trouche, L. (2008). Du travail documentaire des enseignants?: Genèses, collectifs, communautés. Le cas des mathématiques. Education & Didactique, 2(3), 7–33.CrossRefGoogle Scholar
  52. Gueudet, G., & Trouche, L. (2009a). Towards new documentational systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218.CrossRefGoogle Scholar
  53. Gueudet, G., & Trouche, L. (2009b). Vers de nouveaux systèmes documentaires des professeurs de mathématiques?). In I. Bloch & F. Conne (Eds.), Nouvelles perspectives en didactique des mathématiques. Cours de la XIVe école d’été de didactique des mathématiques (pp. 109–133). Paris: La Pensée Sauvage.Google Scholar
  54. Gueudet, G., & Trouche, L. (2010). Des ressources aux documents, travail du professeur et genèses documentaires. In G. Gueudet & L. Trouche (Eds). Ressources vives: le travail documentaire des professeurs en mathématiques (pp. 57–74). Paideia, Rennes: Presses Universitaires de Rennes & INRP.Google Scholar
  55. Gueudet, G., & Trouche, L. (2011). Mathematics teacher education advanced methods: An example in dynamic geometry. ZDM – Mathematics Education, 43(3), 399–411.CrossRefGoogle Scholar
  56. Gueudet, G., Sacristan, A., Soury-Lavergne, S., & Trouche, L. (2012). Online paths in mathematics teacher training: New resources and new skills for teacher educators. ZDM – Mathematics Education, 44(6), 717–731.CrossRefGoogle Scholar
  57. Gueudet, G., Pepin, B., & Trouche, L. (2013). Collective work with resources: An essential dimension for teacher documentation. ZDM – Mathematics Education, 45(7), 1003–1016.CrossRefGoogle Scholar
  58. Gueudet, G., Pepin, B., Sabra, H., & Trouche, L. (2016). Collective design of an e-textbook: Teachers’ collective documentation. Journal of Mathematics Teacher Education, 19(2), 187–203.CrossRefGoogle Scholar
  59. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195–227.CrossRefGoogle Scholar
  60. Hadjerrouit, S. (2017). Assessing the affordances of SimReal+ and their applicability to support the learning of mathematics in teacher education. Issues in Informing Science and Information Technology Education, 14, 121–138.CrossRefGoogle Scholar
  61. Heid, M., K. (2008). Calculator and computer technology in the K-12 curriculum some observations from a US perspective. In Z. Ususkin, & E. Willmore (Eds.), Mathematics curriculum in Pacific rim countries-China, Japan, Korea, and Singapore: Proceedings of a conference (pp. 293–304). Charlotte, Information Age Publishing.Google Scholar
  62. Herbst, P., Chazan, D., Chen, C., Chieu, V. M., & Weiss, M. (2011). Using comics-based representations of teaching, and technology, to bring practice to teacher education courses. ZDM – Mathematics Education, 43(1), 91–103.CrossRefGoogle Scholar
  63. Hollebrands, K., & Okumus, S. (2018). Secondary mathematics teachers’ instrumental integration in technology-rich geometry classrooms. Journal of Mathematical Behavior, 49(1), 82–94.CrossRefGoogle Scholar
  64. Hollebrands, K., & Zbiek, R. (2004). Teaching mathematics with technology: An evidence-based road map for the Journey. In R. Rubenstein & G. Bright (Eds.), Perspectives on the teaching of mathematics: Sixty-sixth yearbook (pp. 259–270). Reston: National Council of Teachers of Mathematics.Google Scholar
  65. Hollebrands, K., McCulloch, A. W., & Lee, H. S. (2016). Prospective teachers; incorporation of technology in mathematics lesson plans. In M. Niess, S. Driskell, & K. Hollebrands (Eds.), Handbook of research on transforming mathematics teacher education in the digital age (pp. 272–292). Hershey: IGI Global.CrossRefGoogle Scholar
  66. Hoyles, C., & Noss, R. (1992). A pedagogy for mathematical microworlds. Educational Studies in Mathematics, 23(1), 31–57.CrossRefGoogle Scholar
  67. Igliori, S. B. C., & Almeida, M. V. (2018). Un support numérique pour le travail de documentation des enseignants de mathématiques de l’EFII (Collège, en France). In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 288–291). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  68. Ignácio, R., Lima, R., & Gitirana, V. (2018). The birth of the documentary system of mathematics pre-service teachers in a supervised internship with the creation of a digital textbook chapter. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 292–295). Lyon: ENS de Lyon. retrieved on November 8th 2018 at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  69. Jameau, A., & Le Hénaff, C. (2018). Resources for science teaching in a foreign language. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 79–82). Lyon: ENS de Lyon. retrieved on November 8th 2018 at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  70. Jaworski, B. (2014). Reflective practicioner in mathematics education. In S. Lerman (Ed.), Encyclopedia in mathematics education (pp. 529–532). Dordrecht: Springer.CrossRefGoogle Scholar
  71. Jones, W. (2007). Personal information management. Annual Review of Information Science and Technology, 41(1), 453–504.CrossRefGoogle Scholar
  72. Kaput, J. J. (1995). Overcoming physicality and the eternal present: Cybernetic manipulatives. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 161–177). Berlin: Springer.CrossRefGoogle Scholar
  73. Kennewell, S. (2001). Using affordances and constraints to evaluate the use of information and communications technology in teaching and learning. Journal of Information Technology for Teacher Education, 10(1–2), 101–116.CrossRefGoogle Scholar
  74. Kidron, I., Bosch, M., Monaghan, J., & Palmér, H. (2018). Theoretical perspectives and approaches in mathematics education research. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven, (Eds.), Developing Research in Mathematics Education: Twenty years of communication, cooperation and collaboration in Europe. London: Routledge.Google Scholar
  75. Kieran, C., Boileau, A., Tanguay, D., & Drijvers, P. (2013). Design researchers’ documentational genesis in a study on equivalence of algebraic expressions. ZDM – Mathematics Education, 45(7), 1045–1056.CrossRefGoogle Scholar
  76. Kirchner, P., Strijbos, J.-W., Kreijns, K., & Beers, B. J. (2004). Designing electronic collaborative learning environments. Educational Technology Research and Development, 52(3), 47–66.CrossRefGoogle Scholar
  77. Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher education, 9(1), 60–70.Google Scholar
  78. Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic data exploration (computer software, Version 1.0). Emeryville: Key Curriculum Press.Google Scholar
  79. Kozaklı Ülger, T., & Tapan Broutin, M. S. (2018). Transition from a paper-pencil to a technology enriched environment: A teacher’s use of technology and resource selection. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 344–347). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  80. Lagrange, J. B., & Monaghan, J. (2009). On the adoption of a model to interpret teachers’ use of technology in mathematics lessons. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.). Proceedings of the Sixth Congress of European Research in Mathematics Education (pp. 1605–1614). Lyon: ENS de Lyon.Google Scholar
  81. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.Google Scholar
  82. Lealdino Filho, P., & Mercat, C. (2018). Teaching computational thinking in classroom environments: A case for unplugged scenario. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 296–299). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  83. Leroyer, L. (2018). The capacity to think of transmission of knowledge from learning supports: A proposition of a conceptual model. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceeedings of the re(s)sources 2018 international conference (pp. 203–206). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  84. Lester, F. K. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. ZDM – Mathematics Education, 37(6), 457–467.CrossRefGoogle Scholar
  85. Leung, A., & Bolite-Frant, J. (2015). Designing mathematics tasks: The role of tools. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education:. The 22nd ICMI study (pp. 191–225). Cham: Springer.CrossRefGoogle Scholar
  86. Lucena, R. (2018). Metaorquestração Instrumental: um modelo para repensar a formação teórico-prática de professores de matemática. Doctoral thesis. Mathematics and Technological Education Pos-graduation Program. Recife-Brazil: UFPE.Google Scholar
  87. Lucena, R., Gitirana, V., & Trouche, L. (2018). Instrumental meta-orchestration for teacher education. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 300–303). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  88. Males, L., Setniker, A., & Dietiker, L. (2018). What do teachers attend to in curriculum materials? In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 207–210). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  89. Martinez, M., Cruz, R., & Soberanes, A. (2018). The mathematical teacher: A case study of instrumental genesis in the UAEM. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 211–214). Lyon: ENS de Lyon. retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  90. Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: The pascaline and Cabri Elem e-books in primary school mathematics. ZDM – Mathematics Education, 45(7), 959–971.CrossRefGoogle Scholar
  91. Mercat, C., Lealdino Filho, P., & El-Demerdash, M. (2017). Creativity and technology in mathematics : From story telling to algorithmic with Op’Art. Acta Didactica Napocensia, 10(1), 63–70.CrossRefGoogle Scholar
  92. Messaoui, A. (2018). The complex process of classifying resources, an essential component of documentation expertise. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the res(s)ource 2018 international conference (pp. 83–87). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  93. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.CrossRefGoogle Scholar
  94. Monaghan, J. (2016). Developments relevant to the use of tools in mathematics. In J. Monaghan, L. Trouche, & J. M. Borwein (Eds.), Tools and mathematics: Instruments for learning (pp. 163–180). New York: Springer.CrossRefGoogle Scholar
  95. Naftaliev, E. (2018). Prospective teachers’ interactions with interactive diagrams: Semiotic tools, challenges and new paths. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the res(s)ource 2018 international conference (pp. 304–307). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  96. Naftaliev, E., & Yerushalmy, M. (2017). Design digital tasks: Interactive diagrams as resource and constraint. In A. Leung & A. Baccaglini-Frank (Eds.), The role and potential of using digital technologies in designing mathematics education tasks (pp. 153–173). Cham: Springer.CrossRefGoogle Scholar
  97. Nascimento, J., Jr., Carvalho, E., & Farias, L. M. (2018). Creation of innovative teaching situation through instrumental genesis to maximize teaching specific content: Acid-base chemical balance. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the res(s)ource 2018 international conference (pp. 308–311). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  98. Ndlovu, M., Wessels, D., & De Villiers, M. (2011). An instrumental approach to modelling the derivative in sketchpad. Pythagoras, 32(2), 1–15.CrossRefGoogle Scholar
  99. Nongni, G, & DeBlois, L. (2017). Planification de l’enseignement de l’écart-type en utilisant les ressources documentaires. In A. Adihou, J. Giroux, A. Savard, & K.M. Huy (Eds.). Données, variabilité et tendance vers le futur. Acte du Colloque du GDM (pp. 205–2012). Canada, Québec: Université McGill.Google Scholar
  100. Nongni, G., & DeBlois. (2018). Planning of the teaching of the standard deviation using digital documentary resources. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 312–315). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563
  101. Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.Google Scholar
  102. Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  103. Okumus, S., & Ipek, A.S. (2018). Pre-service mathematics teachers’ investigation of the constraints of mathematical tools. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 316–319). Lyon: ENS de Lyon, retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563
  104. Orozco, J., Cuevas, A., Madrid, H., & Trouche, L. (2018). A proposal of instrumental orchestration to introduce eigenvalues and eigenvectors in a first course of linear algebra for engineering students. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 320–323). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  105. Papert, S., & Harel, I. (1991). Preface, situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism, research reports and essays, 1985–1990 (p. 1). Norwood: Ablex.Google Scholar
  106. Pea, R. D. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167–182.CrossRefGoogle Scholar
  107. Pepin, B., Gueudet, G., & Trouche, L. (2013). Re-sourcing teachers’ work and interactions: A collective perspective on resources, their use and transformation. ZDM – Mathematics Education, 45(7), 929–943.CrossRefGoogle Scholar
  108. Pepin, B., Gueudet, G., & Trouche, L. (2017). Refining teacher design capacity: Mathematics teachers’ interactions with digital curriculum resources. ZDM – Mathematics Education, 49(5), 799–812.CrossRefGoogle Scholar
  109. Pfeiffer, C. R. (2017). A study of the development of mathematical knowledge in a GeoGebra-focused learning environment. Unpublished PhD dissertation. Stellenbosch: Stellenbosch University.Google Scholar
  110. Pfeiffer, C. R., & Ndlovu, M. (2018). Teaching and learning of function transformations in a GeoGebra-focused learning environment. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)sources 2018 international conference (pp. 324–327). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  111. Piaget, J. (1955). The construction of reality in the child. London: Routledge & Kegan Paul Limited.Google Scholar
  112. Prieur, M. (2016). La conception codisciplinaire de métaressources comme appui à l’évolution des connaissances des professeurs de sciences. Les connaissances qui guident un travail de préparation pour engager les élèves dans l’élaboration d’hypothèses ou de conjectures. PhD. Lyon: Université de Lyon, https://hal.archives-ouvertes.fr/tel-01364778v2/document
  113. Psycharis, G., & Kalogeria, E. (2018). TPACK addressed by trainee teacher educators’ documentation work. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 328–331). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  114. Rabardel, P. (1995). Les hommes et les technologies: Approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  115. Ratnayake, I., & Thomas, M. (2018). Documentational genesis during teacher collaborative development of tasks incorporating digital technology. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 219–222). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  116. Remillard, J. (2010). Modes d’engagement : comprendre les transactions des professeurs avec les ressources curriculaires en mathématiques. In G. Gueudet, & L. Trouche (Eds.), Ressources vives: le travail documentaire des professeurs en mathématiques (pp. 201–216). Rennes/Lyon: INRP/PUR.Google Scholar
  117. Rocha, K. (2018). Uses of online resources and documentational trajectories: The case of Sésamath. In L. Fan, L. Trouche, C. Qi, S. Rezat, J. & Visnovska (Eds.), Research on mathematics textbooks and teachers’ resources: Advances and issues. ICME-13 monograph (pp. 235–258). Cham: Springer.Google Scholar
  118. Rodrigues, A., Baltar, P., & Bellemain, F. (2018). Analysis of a Task in three Environments: paper and pencils, manipulative materials and Apprenti Géomètre 2∗. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury–Lavergne, & L. Trouche (Eds.), Proceedings of the Re(s)source 2018 International Conference (pp. 223–226). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563
  119. Rudd, T. (2007). Interactive whiteboards in the classroom. Bristol: Futurelab Report – IWBs.Google Scholar
  120. Ruthven, K. (2014). Frameworks for analysing the expertise that underpins successful integration of digital technologies into everyday teaching practice. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era (pp. 373–393). Dordrecht: Springer.CrossRefGoogle Scholar
  121. Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers and Education, 51(1), 297–317.CrossRefGoogle Scholar
  122. Scherrer, J., & Stein, M. K. (2013). Effects of a coding intervention on what teachers learn to notice during whole–group discussion. Journal of Mathematics Teacher Education, 16(2), 105–124.CrossRefGoogle Scholar
  123. Schoenfeld, A. H. (2010). How we think: A theory of goal–oriented decision making and its educational applications. New York: Routledge.CrossRefGoogle Scholar
  124. Sensevy, G. (2011). Le Sens du Savoir. Éléments pour une théorie de l’action conjointe en didactique. Bruxelles: De Boeck.Google Scholar
  125. Sherman, M. F., & Cayton, C. (2015). Using appropriate tools strategically for instruction. Mathematics Teacher, 109(4), 306–310.CrossRefGoogle Scholar
  126. Sherman, M. F., Cayton, C., & Chandler, K. (2017). Supporting PSTs in using appropriate tools strategically: A learning sequence for developing technology tasks that support students’ mathematical thinking. Mathematics Teacher Educator, 5(2), 122–157.CrossRefGoogle Scholar
  127. Silva, A. (2018). Concepção de um suporte para a elaboração de webdocumentos destinados ao ensino da geometria: o caso das curvas cônicas. Dissertação do mestrado. Programa de Pós-graduação em Educação Matemática e Tecnológica. UFPE, Recife.Google Scholar
  128. Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.CrossRefGoogle Scholar
  129. Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91–104.CrossRefGoogle Scholar
  130. Siqueira, J. E. M., & Bellemain, F. (2018). A dynamic multirepresentational resource for conics. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 359–361). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  131. Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268–275.Google Scholar
  132. Stockero, S. L., & Van Zoest, L. R. (2013). Characterizing pivotal teaching moments in beginning mathematics teachers’ practice. Journal of Mathematics Teacher Education, 16(2), 125–147.CrossRefGoogle Scholar
  133. Swidan, O., Arzarello, F., & Sabena, C. (2018). Teachers’ interventions to foster inquiry-based learning in a dynamic technological environment. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 332–335). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  134. Tabach, M. (2011). A mathematics teacher’s practice in a technological environment: A case study analysis using two complementary theories. Technology, Knowledge and Learning, 16(3), 247–265.Google Scholar
  135. Tabach, M. (2013). Developing a general framework for instrumental orchestration. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 2744–2753). Ankara: Middle East Technical University and ERME.Google Scholar
  136. Taranto, E., Arzarello, F., & Robutti, O. (2018). MOOC as a resource for teachers’ collaboration in educational program. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 167–170). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  137. Tchounikine, P. (2011). Computer science and educational software design—A resource for multidisciplinary work in technology enhanced learning. New York: Springer.CrossRefGoogle Scholar
  138. Thomas, A., & Edson, A. J. (2018). An examination of teacher-generated definitions of digital instructional materials in mathematics. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 340–343). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  139. Thomas, M. O. J., & Hong, Y. Y. (2005). Teacher factors in integration of graphic calculators into mathematics learning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th conference of the International Group for the Psychology of mathematics education (Vol. 4, pp. 257–264). Melbourne: University of Melbourne.Google Scholar
  140. Tiburcio, R., & Bellemain, F. (2018). Computational engineering, didactical, educational software, software engineering. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 262–264). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  141. Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2–3), 110–138.CrossRefGoogle Scholar
  142. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environment: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematics Learning, 9(3), 281–307.CrossRefGoogle Scholar
  143. Trouche, L. (2005). Construction et conduite des instruments dans les apprentissages mathématiques : Nécessité des orchestrations. Recherches en Didactique des Mathématiques, 25, 91–138.Google Scholar
  144. Trouche, L., & Drijvers, P. (2010). Handheld technology: Flashback into the future. ZDM – Mathematics Education, 42(7), 667–681.CrossRefGoogle Scholar
  145. Trouche, L., & Drijvers, P. (2014). Webbing and orchestration; two interrelated views on digital tools in mathematics education. Teaching Mathematics and its Applications, 33(3), 193–209.CrossRefGoogle Scholar
  146. Trouche, L., Gueudet, G., & Pepin, B. (2018, Online First). Documentational approach to didactics. In S. Lerman (Ed.), Encyclopedia of mathematics education. New York: Springer. doi: https://doi.org/10.1007/978-3-319-77487-9_100011-1.Google Scholar
  147. van Dijke-Droogers, M., Drijvers, P., & Bakker, A. (2018). From sample to population: A hypothetical learning trajectory for informal statistical inference. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 348–351). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  148. Vergnaud, G. (1996). The theory of conceptual fields. In. L.P. Steffe, P.Nesher, P. cobb, G.a. Goldin, & B. Greer (Eds.), Theories of Mathematical Learning (pp. 210–239). Mahwah: Laurence Erilbaum.Google Scholar
  149. Vergnaud, G. (2011). Au fond de l’action, la conceptualisation. In J. M. Barbier (Ed.), Savoirs théoriques et savoirs d’action (pp. 275–292). Paris: Presses Universitaires de France.CrossRefGoogle Scholar
  150. Villamizar, F., Cuevas, C., & Martinez, M. (2018). A proposal of instrumental orchestration to integrate the teaching of physics and mathematics. In V. Gitirana, T. Miyakawa, M. Rafalska, S. Soury-Lavergne, & L. Trouche (Eds.), Proceedings of the re(s)source 2018 international conference (pp. 352–355). Lyon: ENS de Lyon. Retrieved on November 8th, 2018, at https://hal.archives-ouvertes.fr/hal-01764563.Google Scholar
  151. Voltolini, A. (2018). Duo of digital and material artefacts dedicated to the learning of geometry at primary school. In L. Ball, P. Drijvers, S. Ladel, H. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education (pp. 83–99). Cham: Springer.CrossRefGoogle Scholar
  152. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  153. Zbiek, R.M., & Hollebrands, K. (2008). A research-informed view of the process of incorporating mathematics technology into classroom practice by inservice and prospective teachers. In M. K. Heid & G. Blume (Eds.), Research on technology in the learning and teaching of mathematics: Syntheses and perspectives. Charlotte: Information Age Publishers.Google Scholar
  154. Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 1169–1207). Charlotte: Information Age.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul Drijvers
    • 1
  • Verônica Gitirana
    • 2
    Email author
  • John Monaghan
    • 3
    • 4
  • Samet Okumus
    • 5
  • Sylvaine Besnier
    • 6
  • Cerenus Pfeiffer
    • 7
  • Christian Mercat
    • 8
  • Amanda Thomas
    • 9
  • Danilo Christo
    • 10
  • Franck Bellemain
    • 11
  • Eleonora Faggiano
    • 12
  • José Orozco-Santiago
    • 13
  • Mdutshekelwa Ndlovu
    • 14
  • Marianne van Dijke-Droogers
    • 1
  • Rogério da Silva Ignácio
    • 11
  • Osama Swidan
    • 15
  • Pedro Lealdino Filho
    • 8
  • Rafael Marinho de Albuquerque
    • 11
  • Said Hadjerrouit
    • 3
  • Tuğçe Kozaklı Ülger
    • 16
  • Anders Støle Fidje
    • 3
  • Elisabete Cunha
    • 17
  • Freddy Yesid Villamizar Araque
    • 13
  • Gael Nongni
    • 18
  • Sonia Igliori
    • 10
  • Elena Naftaliev
    • 19
  • Giorgos Psycharis
    • 20
  • Tiphaine Carton
    • 21
  • Charlotte Krog Skott
    • 22
  • Jorge Gaona
    • 23
  • Rosilângela Lucena
    • 2
  • José Vieira do Nascimento Júnior
    • 24
  • Ricardo Tibúrcio
    • 11
  • Anderson Rodrigues
    • 11
  1. 1.Freudenthal InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.CAA - Núcleo de Formação DocenteFederal University of PernambucoCaruaruBrazil
  3. 3.Agder UniversityKristiansandNorway
  4. 4.University of LeedsLeedsUK
  5. 5.Recep Tayyip Erdogan UniversityRizeTurkey
  6. 6.CREAD: Center of Research on Education, Learning and DidacticUniversity Rennes 2RennesFrance
  7. 7.Cerenus PfeifferStellenbosch UniversityStellenboschSouth Africa
  8. 8.S2HEP (EA4148), IREM, Claude Bernard Lyon 1 UniversityLyonFrance
  9. 9.University of Nebraska-LincolnLincolnUSA
  10. 10.PUC/SP – Pontifíce Catholic University of São PauloSão PauloBrazil
  11. 11.Federal University of PernambucoRecifeBrazil
  12. 12.University of Bari Aldo MoroBariItaly
  13. 13.Cinvestav-IPN, Centre for Research and Advanced StudiesMexico CityMexico
  14. 14.University of JohannesburgJohannesburgSouth Africa
  15. 15.Ben-Gurion University of the NegevBeer ShevaIsrael
  16. 16.Bursa Uludağ UniversityBursaTurkey
  17. 17.Instituto Politécnico de Viana do CasteloViana do casteloPortugal
  18. 18.University of LavalQuebec CityCanada
  19. 19.Achva Academic CollegeArugotIsrael
  20. 20.National and Kapodistrian University of AthensAthensGreece
  21. 21.Paris 8 UniversitySaint-DenisFrance
  22. 22.University College CopenhagenCopenhagenDenmark
  23. 23.Universidad Academia Humanismo CristianoSantiagoChile
  24. 24.State University of Feira de SantanaFeira de SantanaBrazil

Personalised recommendations